Biotechnology (BIT)

BIT 100 Current Topics in Biotechnology (4 credit hours)
This course provides both science and non-science students an opportunity to learn about current issues in biotechnology that play a role in our society. Topic areas will include contemporary and historical applications of biotechnology. From alternative fuel sources to the ramifications of the elucidation of the human genome on health care issues, advances in biotechnology are constantly reshaping the world we live in. Students will give presentations and participate in discussions in the classroom, as well as be engaged in the laboratory on a variety of different topics in biotechnology that affects all our lives.

Prerequisite: High School Biology
GEP Interdisciplinary Perspectives, GEP Natural Sciences
Typically offered in Fall only

BIT 200 Early Research in Biotechnology (4 credit hours)
This course offers first-and second-year students an opportunity for a mentored research experience in a small class environment. Students will learn how to apply the scientific method to make new discoveries and contribute to scientific knowledge. Students may need to come to the lab outside class meeting times to complete work on occasion (flexible hours). Examples of research questions to be investigated in different sections: - Investigating bacteriophage for the management of American Floubrood Disease (AFS) of honey bees - Using planarian as a model system for studying genes important in stem cell differentiation and regeneration - Investigating the genetic potential of complex microbial populations. - Gene expression profiling in zebrafish embryos exposed to antibiotics and anti-acne compounds Freshmen and Sophomores only.

Prerequisite: High School Biology
GEP Natural Sciences
Typically offered in Fall and Spring

BIT 210/MB 210 Phage Hunters (3 credit hours)
This course offers first-year students an opportunity for mentored research. Students will apply the scientific method to make novel discoveries. Students will isolate and characterize naturally-occurring bacteriophage (viruses that infect bacteria, but not humans) from the environment. They will present their data to each other, and the genome of one phage will be sequenced. Students have the option to continue in a second semester to annotate that genome, culminating in a submission to genbank and a poster presentation. Students in the course are part of the National Genome Research Initiative funded by The Howard Hughes Medical Institute. Student should have had a high school biology course before taking this course.

GEP Natural Sciences
Typically offered in Fall only

BIT 211/MB 211 Phage Genomics (2 credit hours)
This course offers first-year students an opportunity for mentored research. Student will apply the scientific method to make novel discoveries. Students will build on the work they began in BIT/MB 210; the novel phage isolated in the previous semester will undergo genome sequencing over winter break, and in this course students will learn to analyze and annotate the genome sequence. This semester will culminate in a submission to genbank and a poster presentation. Students in the course are part of the national genome research initiative funded by the Howard Hughes Medical Institute.

Prerequisite: BIT(MB) 210
GEP Natural Sciences
Typically offered in Spring only

BIT 295 Special Topics in Biotechnology (1-3 credit hours)
Offered as needed to present materials not normally available in regular course offerings or for offering of new courses on a trial basis.

Typically offered in Fall, Spring, and Summer

BIT 402/BIT 502 Biotechnology Networking and Professional Development (1 credit hours)
This course provides students interested in the biotechnology field an opportunity to gain valuable network, job application and interviewing skills. Over the course of the semester students will meet with ~30 biotechnology professionals in our area. In addition, students will learn from individuals in biotechnology jobs about the diverse careers options available and strategies for navigating the job market successfully.

Typically offered in Spring only

BIT 410 Manipulation of Recombinant DNA (4 credit hours)
Introduction to molecular biology and protein chemistry. Theory behind laboratory techniques and overview of cloning strategies starting from nucleic acid or protein sequence data. Laboratory sessions involve subcloning, preparation of competent cells, transformation, screening recombinant DNA by colony hybridization and PCR, SDS-PAGE of recombinant protein, affinity purification, and western blots.

Prerequisite: BIO 183 or ZO/BIO 160 and CH 223 or CH 227 with a C- or better
Typically offered in Fall, Spring, and Summer

BIT 462/BIT 562 Gene Expression Analysis: Microarrays (2 credit hours)
Microarray analysis is an evolving technique with its basis in the dynamic properties of the nucleic acid hybridization. We will review current theory, techniques, instrumentation, troubleshooting, analysis tools, and advanced protocols for microarray analysis. Students will have the opportunity to utilize skills learned during lecture in a laboratory environment and have access to exceptional instrumentation. At the conclusion of this course, students should feel comfortable with microarray experimental design, its tools, an analysis of generated data. This is a half-semester course. Student must register for both lecture and lab sections

Prerequisite: BIT 410 or S10
Typically offered in Fall only
BIT 463/CHE 463/BEC 463/BIT 563/CHE 563/BEC 563 Fermentation of Recombinant Microorganisms (2 credit hours)
Introduction to fermentation and protein chemistry. Theory behind laboratory techniques and overview of industrial scale expression systems. Laboratory sessions involve use of microbial expression vectors, fermentation systems, and large-scale purification of recombinant protein. Half semester course, first part.
Prerequisite: CH 223 or CH 227; Corequisite: (BIT 410 or BCH 452 or MB 352 or BEC 363)
Typically offered in Fall and Spring

BIT 464/BIT 564 Protein Purification (2 credit hours)
Prerequisite: BIT 410 or BIT 510 or BCH 454
Typically offered in Spring only

BIT 465/BIT 565 Real-time PCR Techniques (2 credit hours)
Real time PCR is an evolving technique with its basis in the dynamic properties of the polymerase chain reaction and fluorescent detection. We will review current real-time theory, techniques, machinery, troubleshooting, tools, and advanced protocols for sequence detection including SYBR green, TaqMan, Beacons, multiplexing, and single nucleotide polymorphism analysis. Students will have the opportunity to utilize skills learned during lecture in a laboratory environment. At the conclusion of this course, students should feel comfortable with real-time experimental design, its tools, and analysis of generated data. This is a half-semester course. Student must register for both lecture and lab sections.
Prerequisite: BIT 410 or 510
Typically offered in Spring only

BIT 466/BIT 566/PO 566/PO 466 Animal Cell Culture Techniques (2 credit hours)
Introduction to animal cell culture techniques. Aseptic technique for vertebrate cell culture, media formulation, primary cell culture, long-term maintenance of cell lines, application of molecular techniques to in vitro situations. Half semester course, first part.
Prerequisite: BIT 410 or BIT 510 or BCH 454
Typically offered in Spring, and Summer

BIT 467/BIT 567 PCR and DNA Fingerprinting (2 credit hours)
Introduction to polymerase chain reaction. Optimization of PCR reactions and primer design for DNA sequences using DNA databases available on the web. Laboratory sections include using rapid techniques for isolating and sequencing DNA from small amounts of sample and forensic identification of individuals using isolated human hairs. Credit is not allowed for both BIT 467 and BIT 567.
Prerequisite: BIT 410/510
Typically offered in Spring only

BIT 468/BIT 568 Genome Mapping (2 credit hours)
Students will be introduced to basic techniques in genetic and physical mapping. The principles of DNA marker development, marker detection, genetic and physical mapping and DNA sequencing will be addressed from a practical view with an emphasis on agricultural applications. This is a half semester course. Student must register for both lecture and lab sections.
Prerequisite: BIT 410 or BIT 510 or BCH 454
Typically offered in Spring only

BIT 471/BIT 571 RNA Interference and Model Organisms (2 credit hours)
Introduction and history of RNA interference technology. Principles, mechanism, and applications of RNA interference in model organisms. Laboratory sessions include RNA interference-mediated silencing of genes in plants, C. elegans, and mammalian cell culture. This is a half-semester course (8 weeks). Student may not earn credit for both BIT 471 and BIT 571.
Prerequisite: BIT 410 or BIT 510 or BCH 454
Typically offered in Spring only

BIT 473/BIT 573 Protein Interactions (2 credit hours)
The interactions of proteins mediate numerous biological processes of cells. This course focuses on ways to identify and study protein-protein interactions, focusing on the advantages and limitations of each technique and how to apply the methods in a laboratory setting. In lab, students will perform a yeast two-hybrid experiment and a co-immunoprecipitation from proteins expressed in mammalian cell culture to confirm detected interactions. This a half-semester course.
Prerequisite: BIT 410 or BIT 510 or BCH 454
Typically offered in Fall and Spring

BIT 474/BIT 574 Plant Genetic Engineering (2 credit hours)
This course covers fundamental hands-on techniques and strategies in plant genetic engineering. Plants are major sources of food, fiber and fuel and provide model systems for both fundamental and applied research. Students will learn techniques for stable and transient transformation of plants and plant cell cultures and selection and detection of transgene expression. Additional topics covered will include methods to generate and screen for mutants, synthetic biology and applications of plant genetic engineering. This is a half-semester course. Credit is not allowed for both BIT 474 and BIT 574.
Prerequisite: BIT 410 or BIT 510 or BCH 454 or PB 421
Typically offered in Fall only

BIT 476 Applied Bioinformatics (2 credit hours)
The haploid human genome occupies a total of just over 3 billion DNA base pairs. This information is not contained in books, but stored in electronic databases. Computational biology utilizes infer function by comparative analysis. This course is designed for life scientists from all fields to introduce them to the power of bioinformatics and enable them to access and utilize biological information in databases for their own research.
Prerequisite: BIT 410 or BCH 454 or GN 311
Typically offered in Fall only
BIT 477/BIT 577 Metagenomics (2 credit hours)
Participants will be introduced to a variety of methods for studying the complex microbial populations that surround us, including theory, applications, limitations, and health and legal implications. Students will apply deep sequencing techniques to mine the genetic diversity of complex microbial populations such as the rhizosphere, a swine lagoon sample, or even the communities of microbes growing happily inside your kitchen sink drain. This course will provide hands-on experience with molecular and computational tools that can be used to study the relationships between microbial communities and ecosystems or hosts.
Prerequisite: BIT 410 or 510
Typically offered in Fall only

BIT 478/BIT 578 Mapping the Brain (2 credit hours)
Mapping the Brain is designed to provide students with a neuroscience research experience. In lecture, students will gain an appreciation for the fundamental challenges inherent in studying the brain and explore the theory, applications, and limitations of new and traditional technologies employed in modern neuroscience. In the lab, students will use a novel transgenic mouse model to analyze the connections of a single population of neurons and the effects of stimulating their activity in vivo. This hands-on laboratory research experience will expose students to common laboratory approaches (histology, microscopy, etc.) as well as to cutting edge genetic approaches.
Prerequisite: BIT 410 or 510
Typically offered in Fall only

BIT 479/BIT 579 High-Throughput Discovery (2 credit hours)
In this eight-week lab module, participants will be introduced to high-throughput (HT) discovery science and the underlying quantitative biology skills necessary for robust assay design. Participants will learn modern high-throughput screening approaches that will prepare them to design, validate, and perform cutting-edge screens. Different HT approaches will be discussed using authentic case studies and critical thinking scenarios based on published studies. Essential quantitative biology skills for the design and analysis of HT discovery science will be emphasized and tested regularly using "biomath" quizzes. The power of automation and robotics will be highlighted and hands-on experience with a liquid handler and the software used to operate it will be routine in the lab sessions. Participants will also be exposed to novel high-throughput approaches through discussions of new technologies and guest speakers who are experts in the field. Students will not receive credit for both BIT 479 and BIT 579.
Prerequisite: BIT 410 or 510
Typically offered in Spring only

BIT 480/BIT 580 Yeast Metabolic Engineering (2 credit hours)
Participants will be introduced to a variety of methods for using yeast to produce commercially relevant products. Topics will include cultivation, genetic manipulation to delete or replace genes, transformation, heterologous gene expression and codon optimization/gene synthesis. Various modern molecular cloning approaches and computational resources will be discussed. Students will apply gene manipulation approaches to engineer Saccharomyces cerevisiae to produce beta-carotene and/or other relevant biotechnology products. This will be accomplished by assembling a series of optimized genes in the biosynthetic pathway using the versatile genetic assembly system (VEGAS) that exploits the capacity of Saccharomyces cerevisiae to join sequences with terminal homology by homologous recombination. Expression will be compared by assembling libraries of transcriptional units with different promoters and using different genetic knock-outs as hosts. Additionally, computational modeling of metabolic processes will be used to assess perturbations to metabolic fluxes.
Prerequisite: BIT 410 or 510
Typically offered in Spring only

BIT 481/PB 481 Plant Tissue Culture and Transformation (2 credit hours)
Basic techniques in plant tissue culture and transformation. Empirical approaches to techniques in plant tissue culture, designing transgenes for expression in specific plant cell organelles and tissues, use of reporter genes to optimize transformation, and troubleshooting transformation. Laboratory sessions provide hands-on experience with plant tissue culture and transformation. Use of reporter genes, fluorescence microscopy and digital imaging. Half semester course, first part.
Typically offered in Spring only

BIT 482/BIT 582 Virus Biotechnology: Pathogens to Therapeutics (2 credit hours)
In this course, students will be introduced to concepts spanning principles in molecular virology through to engineering of viruses as molecular therapeutics. Students will be able to describe the basic tenets of molecular virology, articulate several principle uses of viruses in biotechnology applications, and perform data analysis on several fundamental virus assays.
Prerequisite: BIT 410
Typically offered in Fall and Spring

BIT 492 External Learning Experience (1-6 credit hours)
A learning experience in the area of biotechnology within an academic framework that utilizes facilities and resources which are external to the campus. Contact and arrangements with prospective employers must be initiated by student and approved by a faculty adviser, the prospective employer, and the departmental teaching coordinator prior to the experience. Project must be approved by the Academic Coordinator or Program Director of the Biotechnology Program.
Typically offered in Fall and Summer

BIT 493 Special Problems in Biotechnology (1-6 credit hours)
A learning experience within an academic framework that utilizes campus facilities and resources. Contact and arrangements with prospective mentor(s) must be initiated by student and approved by a faculty adviser, the prospective mentor, and the departmental teaching coordinator prior to the experience. Project must be approved by the Academic Coordinator of Program Director of the Biotechnology Program.
Typically offered in Fall, Spring, and Summer
BIT 495 Special Topics in Biotechnology (1-3 credit hours)
Offered as needed to present materials not normally available in regular course offerings or for offering of new courses on a trial basis.

Typically offered in Fall, Spring, and Summer

BIT 501 Ethical Issues in Biotechnology (1 credit hours)
Students investigate and discuss current controversial issues in biotechnology. This course emphasizes thinking about new technologies in a rational and thoughtful way.

Typically offered in Fall and Spring

BIT 502/BIT 402 Biotechnology Networking and Professional Development (1 credit hours)
This course provides students interested in the biotechnology field an opportunity to gain valuable network, job application and interviewing skills. Over the course of the semester the students will meet with ~30 biotechnology professionals in our area. In addition, students will learn from individuals in biotechnology jobs about the diverse careers options available and strategies for navigating the job market successfully.

Typically offered in Spring only

BIT 510 Core Technologies in Molecular and Cellular Biology (4 credit hours)
Basic technologies of recombinant DNA procedures, gene expression, isolation and identification of nucleic acids and proteins.

Prerequisite: Equivalent of CH 223 and (MB 351 or GN 311)

Typically offered in Fall, Spring, and Summer

BIT 562/BIT 462 Gene Expression Analysis: Microarrays (2 credit hours)
Microarray analysis is an evolving technique with its basis in the dynamic properties of the nucleic acid hybridization. We will review current theory, techniques, instrumentation, troubleshooting, analysis tools, and advanced protocols for microarray analysis. Students will have the opportunity to utilize skills learned during lecture in a laboratory environment and have access to exceptional instrumentation. At the conclusion of this course, students should feel comfortable with real-time experimental design, its tools, and analysis of generated data. This is a half-semester course. Student must register for both lecture and lab sections.

Prerequisite: BIT 410 or 510

Typically offered in Fall only

BIT 564/BIT 464 Protein Purification (2 credit hours)

Prerequisite: BIT 410 or BIT 510 or BCH 454

Typically offered in Spring only

BIT 565/BIT 465 Real-time PCR Techniques (2 credit hours)
Real time PCR is an evolving technique with its basis in the dynamic properties of the polymerase chain reaction and fluorescent detection. We will review current real-time theory, techniques, machinery, troubleshooting, tools, and advanced protocols for sequence detection including SYBR green, TaqMan, Beacons, multiplexing, and single nucleotide polymorphism analysis. Students will have the opportunity to utilize skills learned during lecture in a laboratory environment. At the conclusion of this course, students should feel comfortable with real-time experimental design, its tools, and analysis of generated data. This is a half-semester course. Student must register for both lecture and lab sections.

Prerequisite: BIT 410 or BIT 510 or BCH 454

Typically offered in Spring only

BIT 566/PO 566/PO 466/BIT 466 Animal Cell Culture Techniques (2 credit hours)
Introduction to animal cell culture techniques. Aseptic technique for vertebrate cell culture, media formulation, primary cell culture, long-term maintenance of cell lines, application of molecular techniques to in vitro situations. Half semester course, first part.

Prerequisite: BIT 410 or BIT 510 or BCH 454

Typically offered in Fall, Spring, and Summer

BIT 567/BIT 467 PCR and DNA Fingerprinting (2 credit hours)
Introduction to polymerase chain reaction. Optimization of PCR reactions and primer design for DNA sequences using DNA databases available on the web. Laboratory sections include using rapid techniques for isolating and sequencing DNA from small amounts of sample and forensic identification of individuals using isolated human hairs. Credit is not allowed for both BIT 467 and BIT 567.

Prerequisite: BIT 410/510

Typically offered in Spring only

BIT 568/BIT 468 Genome Mapping (2 credit hours)
Students will be introduced to basic techniques in genetic and physical mapping. The principles of DNA marker development, marker detection, genetic and physical mapping and DNA sequencing will be addressed from a practical view with an emphasis on agricultural applications. This is a half semester course. Student must register for both lecture and lab sections.

Prerequisite: BIT 410 or BIT 510 or BCH 454

Typically offered in Spring only

BIT 569 RNA Purification and Analysis (2 credit hours)
Laboratory-intensive course covering techniques in RNA purification and analysis including: isolation of quality RNA; quantification by gel and spectrophotometer; separation by gel electrophoresis; reverse transcription PCR; and Northern blotting using non-radioactive labeling and detection by chemi-luminescence. Half semester course.

Prerequisite: BIT 410 or 510

Typically offered in Fall only
BIT 571/BIT 471 RNA Interference and Model Organisms (2 credit hours)
Introduction and history of RNA interference technology. Principles, mechanism, and applications of RNA interference in model organisms. Laboratory sessions include RNA interference-mediated silencing of genes in plants, C. elegans, and mammalian cell culture. This is a half-semester course (8 weeks). Student may not earn credit for both BIT 471 and BIT 571.

Prerequisite: BIT 410 or BIT 510 or BCH 454
Typically offered in Spring only

BIT 572/BIO 572/CH 572 Proteomics (3 credit hours)
Introduction and history of the field of proteomics followed by the principles and applications of proteomics technology to understand protein expression and protein post-translational modifications. Laboratory sessions include growing yeast with stable-isotope labeled amino acids, protein purification, Western blots, protein identification and quantification, and protein bioinformatic analysis. This is a half-semester course.

Prerequisite: BIT 410 or BIT 510 or BCH 454 (or approval from the instructor)
Typically offered in Spring only

BIT 573/BIT 473 Protein Interactions (2 credit hours)
The interactions of proteins mediate numerous biological processes of cells. This course focuses on ways to identify and study protein-protein interactions, focusing on the advantages and limitations of each technique and how to apply the methods in a laboratory setting. In lab, students will perform a yeast two-hybrid experiment and a co-immunoprecipitation from proteins expressed in mammalian cell culture to confirm detected interactions. This a half-semester course.

Prerequisite: BIT 410 or BCH 454
Typically offered in Spring only

BIT 574/BIT 474 Plant Genetic Engineering (2 credit hours)
This course covers fundamental hands-on techniques and strategies in plant genetic engineering. Plants are major sources of food, fiber and fuel and provide model systems for both fundamental and applied research. Students will learn techniques for stable and transient transformation of plants and plant cell cultures and selection and detection of transgene expression. Additional topics covered will include methods to generate and screen for mutants, synthetic biology and applications of plant genetic engineering. This is a half-semester course. Credit is not allowed for both BIT 474 and BIT 574.

Prerequisite: BIT 410 or BIT 510 or BCH 454 or PB 421
Typically offered in Fall only

BIT 577/BIT 477 Metagenomics (2 credit hours)
Participants will be introduced to a variety of methods for studying the complex microbial populations that surround us, including theory, applications, limitations, and health and legal implications. Students will apply deep sequencing techniques to mine the genetic diversity of complex microbial populations such as the rhizosphere, a swine lagoon sample, or even the communities of microbes growing happily inside your kitchen sink drain. This course will provide hands-on experience with molecular and computational tools that can be used to study the relationships between microbial communities and ecosystems or hosts.

Prerequisite: BIT 410 or 510
Typically offered in Fall only

BIT 578/BIT 478 Mapping the Brain (2 credit hours)
Mapping the Brain is designed to provide students with a neuroscience research experience. In lecture, students will gain an appreciation for the fundamental challenges inherent in studying the brain and explore the theory, applications, and limitations of new and traditional technologies employed in modern neuroscience. In the lab, students will use a novel transgenic mouse model to analyze the connections of a single population of neurons and the effects of stimulating their activity in vivo. This hands-on laboratory research experience will expose students to common laboratory approaches (histology, microscopy, etc.) as well as to cutting edge genetic approaches.

Prerequisite: BIT 410 or 510
Typically offered in Fall only

BIT 579/BIT 479 High-Throughput Discovery (2 credit hours)
In this eight-week lab module, participants will be introduced to high-throughput (HT) discovery science and the underlying quantitative biology skills necessary for robust assay design. Participants will learn modern high-throughput screening approaches that will prepare them to design, validate, and perform cutting-edge screens. Different HT approaches will be discussed using authentic case studies and critical thinking scenarios based on published studies. Essential quantitative biology skills for the design and analysis of HT discovery science will be emphasized and tested regularly using “biomath” quizzes. The power of automation and robotics will be highlighted and hands-on experience with a liquid handler and the software used to operate it will be routine in the lab sessions. Participants will also be exposed to novel high-throughput approaches through discussions of new technologies and guest speakers who are experts in the field. Students will not receive credit for both BIT 479 and BIT 579.

Prerequisite: BIT 410 or 510
Typically offered in Spring only

BIT 580/BIT 480 Yeast Metabolic Engineering (2 credit hours)
Participants will be introduced to a variety of methods for using yeast to produce commercially relevant products. Topics will include cultivation, genetic manipulation to delete or replace genes, transformation, heterologous gene expression and codon optimization/gene synthesis. Various modern molecular cloning approaches and computational resources will be discussed. Students will apply gene manipulation approaches to engineer Saccharomyces cerevisiae to produce beta-carotene and/or other relevant biotechnology products. This will be accomplished by assembling a series of optimized genes in the biosynthetic pathway using the versatile genetic assembly system (VEGAS) that exploits the capacity of Saccharomyces cerevisiae to join sequences with terminal homology by homologous recombination. Expression will be compared by assembling libraries of transcriptional units with different promoters and using different genetic knock-outs as hosts. Additionally, computational modeling of metabolic processes will be used to assess perturbations to metabolic fluxes.

Prerequisite: BIT 410 or 510
Typically offered in Spring only

BIT 581 Plant Transformation (2 credit hours)
BIT 582/BIT 482 Virus Biotechnology: Pathogens to Therapeutics (2 credit hours)
In this course, students will be introduced to concepts spanning principles in molecular virology through to engineering of viruses as molecular therapeutics. Students will be able to describe the basic tenets of molecular virology, articulate several principle uses of viruses in biotechnology applications, and perform data analysis on several fundamental virus assays.
Prerequisite: BIT 410
Typically offered in Fall and Spring

BIT 590 Independent Study in Biotechnology (1-3 credit hours)
Independent study in Biotechnology under the supervision of a Biotechnology faculty member. Restricted to graduate students in the Biotechnology Program with consent of the supervising faculty. May not be taken in the first semester of graduate study.
Typically offered in Fall, Spring, and Summer

BIT 595 Special Topics (1-6 credit hours)
Offered as needed to present materials not normally available in regular course offerings or for offering of new courses on a trial basis.
Typically offered in Fall, Spring, and Summer

BIT 685 Master's Supervised Teaching (1-3 credit hours)
Teaching experience under the mentorship of faculty who assist the student in planning for the teaching assignment, observe and provide feedback to the student during the teaching assignment, and evaluate the student upon completion of the assignment.
Master's students only
Typically offered in Fall and Spring

BIT 693 Master's Supervised Research (1-9 credit hours)
Instruction in research and research under the mentorship of a member of the Graduate Faculty.
Prerequisite: Master's student
Typically offered in Fall, Spring, and Summer

BIT 696 Summer Thesis Res (1 credit hours)
For graduate students whose programs of work specify no formal course work during a summer session and who will be devoting full time to thesis research.
Typically offered in Summer only

BIT 790 Independent Study in Biotechnology (1-3 credit hours)
Independent study in Biotechnology under the supervision of a Biotechnology faculty member. Restricted to graduate students in the Biotechnology Program with consent of the supervising faculty. May not be taken in the first semester of graduate study.
Typically offered in Fall, Spring, and Summer

BIT 815 Advanced Special Topics (1-6 credit hours)
Intensive three-week or six-week courses in advanced technologies such as DNA sequencing, downstream processing, immunological techniques, construction of c-DNA libraries, mammalian embryo manipulation, plant transformation, bioreactor design, cloning in gram positive bacteria, electron microscopy or techniques in yeast molecular biology.
Prerequisite: BIT 510
Typically offered in Summer only

BIT 885 Doctoral Supervised Teaching (1-3 credit hours)
Teaching experience under the mentorship of faculty who assist the student in planning for the teaching assignment, observe and provide feedback to the student during the teaching assignment, and evaluate the student upon completion of the assignment.
Doctoral students only (DR)
Typically offered in Fall and Spring

BIT 896 Summer Dissert Res (1 credit hours)
For graduate students whose programs of work specify no formal course work during a summer session and who will be devoting full time to thesis research.
Typically offered in Summer only