Chemical Engineering (MS)

Master of Science Degree Requirements

Code	Title	Hours	Counts towards
Required Courses *		12	
CHE 711	Chemical Engineering Process Modeling		
CHE 713	Thermodynamics I		
CHE 715	Transport Phenomena		
CHE 717	Chemical Reaction Engineering		
Thesis Options			
Thesis			
CHE 695	Master's Thesis Research		
"Elective Courses" will be determined in conjunction with the academic committee to meet the 30 total hour requirement			
Non-Thesis			
"Elective Cour determined in the academic the 30 total ho	ses" will be conjunction with committee to meet ur requirement		
Total Hours		30	

* Non-CHE undergraduate majors are required to take CHE 596 Core Concepts I and CHE 596 Core Concepts II before they can take any 700-level courses.

CHE Courses

Code	Title	Hours	Counts towards
CHE 543	Polymer Science and Technology	3	
CHE 551	Biochemical Engineering	3	
CHE 560	Chemical Processing of Electronic Materials	3	
CHE 562	Fundamentals of Bio- Nanotechnology	3	
CHE 563	Fermentation of Recombinant Microorganisms	2	

CHE 568	Conventional and Emerging Nanomanufacturin Techniques and Their Applications in Nanosystems	3
CHE 577	Advanced Biomanufacturing and Biocatalysis	3
CHE 596	Special Topics in Chemical Engineering (Core Chemical Engineering Concepts I (required of all non ChE majors; not available for others))	1-3
CHE 596	Special Topics in Chemical Engineering (Core Chemical Engineering Concepts II (required of all non ChE majors; not available for others))	1-3
CHE 596	Special Topics in Chemical Engineering (Colloid Science & Nanoscale Engineering)	1-3
CHE 596	Special Topics in Chemical Engineering (Green Chemical Engineering)	1-3
CHE 596	Special Topics in Chemical Engineering (Molecular Cell Engineering)	1-3
CHE 596	Special Topics in Chemical Engineering (Chemical Process Engineering)	1-3
CHE 596	Special Topics in Chemical Engineering (Polymer Rheology and Processing)	1-3

Engineering	Christine S. Grant	
Concepts)	Carol K. Hall	
CHE 597 Chemical 1-3	Jason M. Haugh	
Projects	Hasan Jameel	
CHE 711 Chemical 3	Robert M. Kelly	
Process	Saad A. Khan	
Modeling	Fanxing Li	
CHE 713 Thermodynamics 3	Gregory N Parson	
CHE 715 Transport 3	Walter James Pfa	
Phenomena	Walter barries Fila	
Reaction 3	Behnam Pourdey	
Engineering	Balaji M. Rao	
CHE 761 Polymer Blends 3 and Alloys	Sindee Lou Simon	
CHE 775 Multi-Scale 3	Richard J. Sponta	
Matter	Orlin Dimitrov Vele	
MA 501 Advanced 3 Mathematics for Engineers and	Phillip R. Westmore	
Scientists I		

Accelerated Bachelor's/Master's Degree Requirements

The Accelerated Bachelors/Master's (ABM) degree program allows exceptional undergraduate students at NC State an opportunity to complete the requirements for both the Bachelor's and Master's degrees at an accelerated pace. These undergraduate students may double count up to 12 credits and obtain a non-thesis Master's degree in the same field within 12 months of completing the Bachelor's degree, or obtain a thesisbased Master's degree in the same field within 18 months of completing the Bachelor's degree.

This degree program also provides an opportunity for the Directors of Graduate Programs (DGPs) at NC State to recruit rising juniors in their major to their graduate programs. However, permission to pursue an ABM degree program does not guarantee admission to the Graduate School. Admission is contingent on meeting eligibility requirements at the time of entering the graduate program.

Faculty **Full Professors**

Milad Abolhasani

Ruben G. Carbonell

Michael David Dickey

Peter S. Fedkiw

Jan Genzer

ugh el əlly ın arsons s Pfaendtner ırdeyhimi 0 Simon pontak v Velev stmoreland

Associate Professors

Adriana San Miguel Delgadillo Chien Ching Lilian Hsiao Albert Jun Qi Keung Stefano Menegatti Erik Emilio Santiso Qingshan Wei

Assistant Professors

Nathan Crook

Artem Rumyantsev

Wentao Tang

Practice/Research/Teaching Professors

Cristina Boi Lisa G. Bullard Matthew Ellis Cooper Kirill Efimenko

Gary Louis Gilleskie

Hassan Golpour

Gregory McKenna

Luke Neal

John H. van Zanten

Adjunct Faculty

Anthony L. Andrady

Orlando J. Rojas

Emeritus Faculty

Joseph M. DeSimone

Richard M. Felder

Michael Carl Flickinger

Keith Gubbins

Harold B. Hopfenberg

Harold Henry Lamb

Phooi K. Lim

Steven W. Peretti

Hubert Winston