Nanoengineering (MR): Materials Science in Nanoengineering Concentration

Degree Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Hours</th>
<th>Counts towards</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Core Courses</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Select four of the following courses:

- MSE 500 Modern Concepts in Materials Science
- MSE 565 Introduction to Nanomaterials
- MSE 791 Conventional and Emerging Nanomanufacturing Techniques and Their Applications in Nanosystems
- ECE/CHE 568 Micro/Nano Scale Fabrication and Manufacturing
- ISE 718 Elements Of Crystallography and Diffraction
- MAE 536 Micro/Nano Electromechanical Systems

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Hours</th>
<th>Counts towards</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Concentration Requirement Courses</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Select a minimum of four of the following courses:

- MSE 702 Defects In Solids
- MSE 706 Phase Transformations and Kinetics
- MSE 708 Thermodynamics Of Materials
- MSE 710 Elements Of Crystallography and Diffraction
- MSE 715 Fundamentals Of Transmission Electron Microscopy
- MSE 721 Nanoscale Simulations and Modeling

Technical Electives 6

Total Hours 30

*Technical Electives* may be ones in the MNAE program not used to satisfy other degree requirements or other technical courses approved by the Director of Graduate Program, Nanoengineering.

Full Professors
Charles M. Balik
Albena Ivanisevic
Thomas H. LaBean
Jagdish Narayan
Joseph B. Tracy
Daryoosh Vashaee
Yaroslava G. Yingling
Yong Zhu

Associate Professors
Rajeev Kumar Gupta

Assistant Professors
Kaveh Ahadi
Wenpei Gao
Srikanth Patala

Practice/Research/Teaching Professors
Claude Lewis Reynolds Jr.

Emeritus Faculty
Elizabeth Carol Dickey

Career Opportunities
Nanotechnological advancements have impacted every technological sector and ultimately may change aspects of our daily lives. The development of these new technologies requires innovative nanoengineers who are invested in the fields of electronics, materials, chemical technology, biotechnology and biomedical engineering. Graduates of the Master of Nanoengineering program are equipped with a solid foundation in nanoscience and nanotechnology necessary for the development of new products and procedures.

Potential careers associated with nanoengineering are as follows.
• Research and development engineer/scientist
• Biomedical engineer
• Materials engineer/scientist
• Bioinformatics
• Chemist
• Process engineer
• Materials analyst
• Professor
• Medical doctor
• PhD student