Mathematics Education (BS) and Statistics (BS) (Double Major)

The double degree in Mathematics Education (BS) and Statistics (BS) is one of two double degree options in the Mathematics Education program in the Department of STEM Education.

This degree program prepares teacher-leaders to have a deep understanding of the mathematics and statistics they will teach and knowledge about different pedagogical strategies they can apply in the classroom. Students take five courses focused on mathematics education, beginning in their sophomore year. Our professional courses in the junior and senior year offer relevant pedagogical experiences, emphasize teaching mathematics with technology, and provide rich field experiences in math classrooms. Graduates are recommended for an initial North Carolina teaching license in mathematics grades 9-12. They will be able to seek employment opportunities in education and make a positive difference in their communities.

In addition, students earn a degree in Statistics. Upper level statistics electives help prepare students for a variety of statistics-related fields in addition to teaching at the secondary level and graduate study in statistics or related fields.

Students in this program also have the opportunity to participate in:

- Undergraduate research
- Kappa student chapter of the NC Council of Teachers of Mathematics, and other high impact experiences such as Passport to Success, SAY Village, and study abroad
- Tutoring in local schools

For more information about this program, visit our website (https://ced.ncsu.edu/programs/mathematics-education-middle-school-or-secondary-bachelor/).

Program Coordinator:
Dr. Cyndi Edgington
Email: cpedging@ncsu.edu
502J Poe Hall
919-515-1754

Plan Requirements
Mathematics Education (BS) and Statistics (BS) (Dual Degree): 129 Total Units

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENG 101</td>
<td>Academic Writing and Research</td>
<td>4</td>
</tr>
<tr>
<td>COM 112</td>
<td>Interpersonal Communication</td>
<td>3</td>
</tr>
</tbody>
</table>

Natural Sciences
Natural Sciences I & II (p. 2) 1
Natural Science Elective 1

GEP Courses
GEP Humanities (http://catalog.ncsu.edu/undergraduate/gep-category-requirements/gep-humanities/) 6
GEP Health and Exercise Studies (http://catalog.ncsu.edu/undergraduate/gep-category-requirements/gep-health-exercise-studies/) 2

Mathematics Education (BS) and Statistics (BS) (Double Major) 1

To satisfy the science requirement, a sequence of two lab-based courses (BIO 181 and BIO 183, or CH 101/CH 102 and CH 201/CH 202, or PY 205 and PY 208, or PY 201 and PY 202, or PY 211 and PY 212) must be taken. The third science may be selected from the GEP list of approved science courses.

Mathematical Sciences
MA 141 Calculus I 2 4
MA 241 Calculus II 2 4
MA 242 Calculus III 2 4
MA 225 Foundations of Advanced Mathematics 2 3
MA 405 Introduction to Linear Algebra 2 3
MA 403 Introduction to Modern Algebra 2 3
MA 408 Foundations of Euclidean Geometry 2 3

Statistics Courses
ST 311 Introduction to Statistics 2 3
ST 312 Introduction to Statistics II 2 3
ST 307 Introduction to Statistical Programming- SAS 2 1
ST 308 Introduction to Statistical Programming - R 2 1
ST 421 Introduction to Mathematical Statistics I 2 3
ST 422 Introduction to Mathematical Statistics II 2 3
ST 430 Introduction to Regression Analysis 2 3
ST 431 Introduction to Experimental Design 2 3
ST 432 Introduction to Survey Sampling 2 3
ST 445 Introduction to Statistical Computing and Data Management 2 3

Advanced Statistics Elective (p. 2) 2 3

Professional Education
ED 100 Intro to Education 2 2
EDP 304 Educational Psychology 2 3
ELP 344 School and Society 2 3
ECI 416 Teaching Exceptional Students in the Mainstreamed Classroom 2 3
EMS 204 Introduction to Mathematics Education 2 3
ED 204 Introduction to Teaching in Today's Schools 2 2
ED 311 Classroom Assessment Principles and Practices 2 2
ED 312 Classroom Assessment Principles and Practices Professional Learning Lab 2 1
EMS 480 Teaching Mathematics with Technology 2 3
EMS 470 Methods and Materials for Teaching Mathematics 2 3
EMS 471 Student Teaching in Mathematics 2 10
EMS 472 Teaching Mathematics Topics in Senior High School 2 3
EMS 490 School Mathematics from an Advanced Perspective 2 3
EMS 495 Senior Seminar in Mathematics and Science Education 2 2
GEP Additional Breadth (http://catalog.ncsu.edu/undergraduate/gep-category-requirements/) (Humanities/Social Sciences/Visual and Performing Arts)

GEP Interdisciplinary Perspectives (http://catalog.ncsu.edu/undergraduate/gep-category-requirements/gep-interdisciplinary-perspectives/)

GEP U.S. Diversity (http://catalog.ncsu.edu/undergraduate/gep-category-requirements/gep-us-diversity/) (verify requirement)

GEP Global Knowledge (http://catalog.ncsu.edu/undergraduate/gep-category-requirements/gep-global-knowledge/) (verify requirement)

Foreign Language Proficiency (http://catalog.ncsu.edu/undergraduate/gep-category-requirements/foreign-language-proficiency/) (verify requirement)

Total Hours 129

1 A grade of C- or higher is required.
2 A grade of C or higher is required.
3 A grade of B- or higher is required.

Natural Sciences I & II

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH 101</td>
<td>Chemistry - A Molecular Science</td>
<td>3</td>
</tr>
<tr>
<td>CH 102</td>
<td>General Chemistry Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>CH 201</td>
<td>Chemistry - A Quantitative Science</td>
<td>3</td>
</tr>
<tr>
<td>CH 202</td>
<td>Quantitative Chemistry Laboratory</td>
<td>1</td>
</tr>
</tbody>
</table>

Biology Sequence

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIO 181</td>
<td>Introductory Biology: Ecology, Evolution, and Biodiversity</td>
<td>4</td>
</tr>
<tr>
<td>BIO 183</td>
<td>Introductory Biology: Cellular and Molecular Biology</td>
<td>4</td>
</tr>
</tbody>
</table>

Physics Sequence A

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PY 205</td>
<td>Physics for Engineers and Scientists I</td>
<td>3</td>
</tr>
<tr>
<td>PY 208</td>
<td>Physics for Engineers and Scientists II</td>
<td>3</td>
</tr>
</tbody>
</table>

Physics Sequence B

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PY 201</td>
<td>University Physics I</td>
<td>4</td>
</tr>
<tr>
<td>PY 202</td>
<td>University Physics II</td>
<td>4</td>
</tr>
</tbody>
</table>

Physics Sequence C

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PY 211</td>
<td>College Physics I</td>
<td>4</td>
</tr>
<tr>
<td>PY 212</td>
<td>College Physics II</td>
<td>4</td>
</tr>
</tbody>
</table>

Advanced Statistics Elective

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSC 442</td>
<td>Introduction to Data Science</td>
<td>3</td>
</tr>
<tr>
<td>ECG 561</td>
<td>Applied Econometrics I</td>
<td>3</td>
</tr>
<tr>
<td>EMS 519</td>
<td>Teaching and Learning of Statistical Thinking</td>
<td>3</td>
</tr>
<tr>
<td>GPH 404</td>
<td>Epidemiology and Statistics in Global Public Health</td>
<td>3</td>
</tr>
<tr>
<td>MA 412</td>
<td>Long-Term Actuarial Models</td>
<td>3</td>
</tr>
<tr>
<td>MA 413</td>
<td>Short-Term Actuarial Models</td>
<td>3</td>
</tr>
<tr>
<td>MA 546</td>
<td>Probability and Stochastic Processes I</td>
<td>3</td>
</tr>
<tr>
<td>ST 401</td>
<td>Experiences in Data Analysis</td>
<td>4</td>
</tr>
<tr>
<td>ST 404</td>
<td>Epidemiology and Statistics in Global Public Health</td>
<td>3</td>
</tr>
</tbody>
</table>

ST 405 | Applied Nonparametric Statistics | 3 |
ST 412	Long-Term Actuarial Models	3
ST 413	Short-Term Actuarial Models	3
ST 433	Applied Spatial Statistics	3
ST 434	Applied Time Series	3
ST 435	Statistical Methods for Quality and Productivity Improvement	3
ST 437	Applied Multivariate and Longitudinal Data Analysis	3
ST 440	Applied Bayesian Analysis	3
ST 442	Introduction to Data Science	3
ST 491	Statistics in Practice	3
ST 495	Special Topics in Statistics	1-6
ST 501	Fundamentals of Statistical Inference I	3
ST 502	Fundamentals of Statistical Inference II	3
ST 503	Fundamentals of Linear Models and Regression	3
ST 505	Applied Nonparametric Statistics	3
ST 506	Sampling Animal Populations	3
ST 507	Statistics For the Behavioral Sciences I	3
ST 508	Statistics For the Behavioral Sciences II	3
ST 511	Statistical Methods For Researchers I	3
ST 512	Statistical Methods For Researchers II	3
ST 513	Statistics for Management I	3
ST 514	Statistics For Management and Social Sciences II	3
ST 515	Experimental Statistics For Engineers I	3
ST 516	Experimental Statistics For Engineers II	3
ST 517	Applied Statistical Methods I	3
ST 519	Teaching and Learning of Statistical Thinking	3
ST 520	Statistical Principles of Clinical Trials	3
ST 524	Statistics In Plant Science	3
ST 533	Applied Spatial Statistics	3
ST 534	Applied Time Series	3
ST 535	Statistical Methods for Quality and Productivity Improvement	3
ST 537	Applied Multivariate and Longitudinal Data Analysis	3
ST 540	Applied Bayesian Analysis	3
ST 544	Applied Categorical Data Analysis	3
ST 546	Probability and Stochastic Processes I	3
ST 555	Statistical Programming I	3
ST 556	Statistical Programming II	3
ST 557	Using Technology to Teach Statistics	3
ST 561	Applied Econometrics I	3
ST 562	Data Mining with SAS Enterprise Miner	3
ST 590	Special Topics	1-6

Mathematics Education and Statistics Dual Major (13MTHEDMS-13MTHEDSD)

Major Field of Study Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mathematical Sciences</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Statistics:</td>
<td></td>
</tr>
</tbody>
</table>

Number of Hours: 129
ST 307 Introduction to Statistical Programming- SAS 1
ST 308 Introduction to Statistical Programming - R 1
ST 311 Introduction to Statistics 3
ST 312 Introduction to Statistics II 3
ST 421 Introduction to Mathematical Statistics I 3
ST 422 Introduction to Mathematical Statistics II 3
ST 430 Introduction to Regression Analysis 3
ST 431 Introduction to Experimental Design 3
ST 432 Introduction to Survey Sampling 3
ST 435 Statistical Methods for Quality and Productivity Improvement 3
(at most one grade below a C is permitted in required and elective math, statistics, and computer science courses; A C- or better is required in ST 421)

Mathematics:

MA 141 Calculus I 4
MA 241 Calculus II 4
MA 242 Calculus III 4
MA 225 Foundations of Advanced Mathematics 3
MA 403 Introduction to Modern Algebra 3
MA 405 Introduction to Linear Algebra 3
MA 408 Foundations of Euclidean Geometry 3
(at most one grade below a C is permitted in required and elective math, statistics, and computer science courses)

Advanced Statistics Elective:
Choose one ST-labeled 400 or 500 level course from:

ST 516 Experimental Statistics For Engineers II 3
ST 517 Applied Statistical Methods I 3
ST 519 Teaching and Learning of Statistical Thinking 3
ST 520 Statistical Principles of Clinical Trials 3
ST 524 Statistics In Plant Science 3
ST 533 Applied Spatial Statistics 3
ST 535 Statistical Methods for Quality and Productivity Improvement 3
ST 537 Applied Multivariate and Longitudinal Data Analysis 3
ST 540 Applied Bayesian Analysis 3
ST 544 Applied Categorical Data Analysis 3
ST 546 Probability and Stochastic Processes I 3
ST 555 Statistical Programming I 3
ST 556 Statistical Programming II 3
ST 557 Using Technology to Teach Statistics 3
ST 561 Applied Econometrics I 3
ST 562 Data Mining with SAS Enterprise Miner 3
ST 563 Introduction to Statistical Learning 3
ST 590 Special Topics 1-6

Sciences:

(To satisfy the science requirement, a sequence of two lab-based science courses must be taken. The third science may be selected from the GEP list of approved science courses)

Choose from:

CH 101 Chemistry - A Molecular Science 3
CH 102 General Chemistry Laboratory 1
CH 201 Chemistry - A Quantitative Science 3
CH 202 Quantitative Chemistry Laboratory 1
OR
BIO 181 Introductory Biology: Ecology, Evolution, and Biodiversity 4
BIO 183 Introductory Biology: Cellular and Molecular Biology 4
OR
PY 201 University Physics I 4
PY 202 University Physics II 4
OR
PY 211 College Physics I 4
PY 212 College Physics II 4

Science elective:

(At most one grade below a C- is permitted in the courses satisfying the science requirement)

Communication:

COM 112 Interpersonal Communication 3

Professional Education

EMS 204 Introduction to Mathematics Education 2
ED 204 Introduction to Teaching in Today's Schools 2
EDP 304 Educational Psychology 3
ELP 344 School and Society 3
EMS 480 Teaching Mathematics with Technology 3
ED 311 Classroom Assessment Principles and Practices 2
Semester Sequence

This is a sample.

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Year</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fall Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MA 141</td>
<td>Calculus I A, 4</td>
<td>4</td>
</tr>
<tr>
<td>ENG 101</td>
<td>Academic Writing and Research H</td>
<td>4</td>
</tr>
<tr>
<td>ST 311</td>
<td>Introduction to Statistics 4</td>
<td>3</td>
</tr>
<tr>
<td>GEP Health and Exercise Studies (http://catalog.ncsu.edu/undergraduate/gep-category-requirements/gep-health-exercise-studies/) E</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>ED 100</td>
<td>Intro to Education 2</td>
<td>2</td>
</tr>
<tr>
<td>Hours</td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>Spring Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MA 241</td>
<td>Calculus II A, 4</td>
<td>4</td>
</tr>
<tr>
<td>Science 1, B, 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 312</td>
<td>Introduction to Statistics II 4</td>
<td>3</td>
</tr>
<tr>
<td>COM 112</td>
<td>Interpersonal Communication D</td>
<td>3</td>
</tr>
<tr>
<td>ST 307</td>
<td>Introduction to Statistical Programming - SAS 4</td>
<td>1</td>
</tr>
<tr>
<td>Hours</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>Second Year</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fall Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MA 242</td>
<td>Calculus III 4</td>
<td>4</td>
</tr>
<tr>
<td>MA 225</td>
<td>Foundations of Advanced Mathematics 4</td>
<td>3</td>
</tr>
<tr>
<td>Science 1, B, 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 308</td>
<td>Introduction to Statistical Programming - R 4</td>
<td>1</td>
</tr>
<tr>
<td>EMS 204</td>
<td>Introduction to Mathematics Education 2</td>
<td>2</td>
</tr>
<tr>
<td>ED 204</td>
<td>Introduction to Teaching in Today's Schools 2</td>
<td>2</td>
</tr>
<tr>
<td>GEP Health and Exercise Studies (http://catalog.ncsu.edu/undergraduate/gep-category-requirements/gep-health-exercise-studies/) E</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Hours</td>
<td></td>
<td>17</td>
</tr>
<tr>
<td>Spring Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 445</td>
<td>Introduction to Statistical Computing and Data Management 4</td>
<td>3</td>
</tr>
<tr>
<td>MA 405</td>
<td>Introduction to Linear Algebra 4</td>
<td>3</td>
</tr>
<tr>
<td>Hours</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Total Hours</td>
<td>130</td>
<td></td>
</tr>
</tbody>
</table>

Third Year

Fall Semester		
ST 421	Introduction to Mathematical Statistics I 4	3
MA 403	Introduction to Modern Algebra 4	3
ED 311	Classroom Assessment Principles and Practices 2	2
ED 312	Classroom Assessment Principles and Practices Professional Learning Lab 2	1
EDP 304	Educational Psychology D, 2	3
ECI 416	Teaching Exceptional Students in the Mainstreamed Classroom	3
ST 430	Introduction to Regression Analysis 4	3
Hours		18

Spring Semester		
ST 422	Introduction to Mathematical Statistics II 4	3
ST 432	Introduction to Survey Sampling 4	3
EMS 480	Teaching Mathematics with Technology 2	3
EMS 472	Teaching Mathematics Topics in Senior High School 2	3
ELP 344	School and Society 2	3
GEP Interdisciplinary Perspectives (http://catalog.ncsu.edu/undergraduate/gep-category-requirements/gep-interdisciplinary-perspectives/) G	3	
Hours		18

Fourth Year		
Fall Semester		
MA 408	Foundations of Euclidean Geometry 4	3
ST 431	Introduction to Experimental Design 4	3
EMS 470	Methods and Materials for Teaching Mathematics 2	3
Advanced Statistics Elective 4, 5	3	
GEP Additional Breadth (http://catalog.ncsu.edu/undergraduate/gep-category-requirements/) (Humanities/Social Sciences/Visual and Performing Arts) E	3	
EMS 490	School Mathematics from an Advanced Perspective 2	3
Hours		18

Spring Semester		
EMS 471	Student Teaching in Mathematics 2	10
EMS 495	Senior Seminar in Mathematics and Science Education 2	2
Hours		12

Total Hours 130
To satisfy the science requirement a sequence of two lab-based science courses (CH 101/CH 102 and CH 201/CH 202, or BIO 181 and BIO 183, or PY 205 and PY 208, or PY 201 and PY 202, or PY 211 and PY 212) must be taken. The third science may be selected from the GEP list of approved science courses.

A grade below a B- is not permitted in EMS 204. A grade below a C is not permitted in all other EMS, EDP, ECI, ELP, and ED courses.

At most one grade below a C- is permitted in the courses satisfying the science requirement.

At most one grade below a C is permitted in the mathematics, statistics, and computer science courses. A C- or better is required in ST 421.

Advanced Statistics Elective must be ST-labeled course at the 400 or 500 level.

*General Education Program (GEP) requirements and GEP Footnotes:

To complete the requirements for graduation and the General Education Program, the following category credit hours and co-requisites must be satisfied. University approved GEP course lists for each of the following categories can be found at http://www.ncsu.edu/uap/academicstandards/gep/courselists/index.html.

A **Mathematical Sciences** (6 credit hours – one course with MA or ST prefix)
 Choose from the University approved GEP Mathematical Sciences course list or the following course(s) if completed as part of the Major requirements may fulfill part or all of this requirement: MA 141, MA 241

B **Natural Sciences** (7 credit hours – include one laboratory course or course with a lab)
 Choose from the University approved GEP Natural Sciences course list or the following course(s) if completed as part of the Major requirements may fulfill part or all of this requirement: CH 101/102 and CH 201/202; or BIO 181/183; or PY 201/202 or PY 205/208 or PY 211/212

C **Humanities** (6 credit hours selected from two different disciplines/course prefixes)
 Choose from the University approved GEP Humanities course list.

D **Social Sciences** (6 credit hours selected from two different disciplines/course prefixes)
 Choose from the University approved GEP Social Sciences course list or the following course(s) if completed as part of the Major requirements may fulfill part or all of this requirement: ED 304, COM 112

E **Physical Education/Healthy Living** (2 credit hours – at least one 100-level Fitness and Wellness Course)
 Choose from the University approved GEP Physical Education/Healthy Living course list.

F **Additional Breadth** (3 credit hours to be selected from the following checked University approved GEP course lists)
 X Humanities/Social Sciences/Visual and Performing Arts or X Mathematical Sciences/Natural Sciences/Engineering

G **Interdisciplinary Perspectives** (5-6 credit hours)
 Major/College course requirements satisfies 3 credit hours of this requirement. Remaining hours must be chosen from the University Approved GEP course list for the category: ECI 305

H **Introduction to Writing** (4 credit hours satisfied by completing ENG 101 with a C- or better)
 The following Co-Requisites must be satisfied to complete the General Education Program requirements:

I **U.S. Diversity** (USD)
 Choose from the University approved GEP U.S. Diversity course list or choose a course identified on the approved GEP course lists as meeting the U.S. Diversity (USD) co-requisite.

J **Global Knowledge** (GK)
 Choose from the University approved GEP Global Knowledge course list or choose a course identified on the approved GEP course lists as meeting the Global Knowledge (GK) co-requisite.

K **Foreign Language proficiency** - Proficiency at the FL_102 level is required for graduation.