Chemical Engineering (BS): Honors Concentration

To see more about what you will learn in this program, visit the Learning Outcomes website (https://apps.oirp.ncsu.edu/pgas/).

The Honors Program allows students to gain a deeper understanding of chemical engineering principles than would be acquired by completing the standard CHE curriculum. Admission to the program requires students to have earned a minimum overall GPA of 3.5 and a minimum GPA of 3.5 in CHE 205 Chemical Process Principles and CHE 225 Introduction to Chemical Engineering Analysis. An honors thesis based on a supervised research experience and completion of at least one semester of faculty-supervised research are required for completion of the Honors Program.

Plan Requirements

Chemical Engineering (BS): Honors Concentration: 127 Total Units

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Year</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fall Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH 101 or CH 103</td>
<td>Chemistry - A Molecular Science ¹ or General Chemistry I for Students in Chemical Sciences</td>
<td>3</td>
</tr>
<tr>
<td>CH 102 or CH 104</td>
<td>General Chemistry Laboratory ¹ or General Chemistry Laboratory I for Students in Chemical Sciences</td>
<td>1</td>
</tr>
<tr>
<td>E 101</td>
<td>Introduction to Engineering & Problem Solving ²</td>
<td>1</td>
</tr>
<tr>
<td>E 115</td>
<td>Introduction to Computing Environments</td>
<td>1</td>
</tr>
<tr>
<td>MA 141</td>
<td>Calculus I ¹</td>
<td>4</td>
</tr>
<tr>
<td>ENG 101</td>
<td>Academic Writing and Research ²</td>
<td>4</td>
</tr>
<tr>
<td>Spring Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH 201 or CH 203</td>
<td>Chemistry - A Quantitative Science ² or General Chemistry II for Students in Chemical Sciences</td>
<td>3</td>
</tr>
<tr>
<td>CH 202 or CH 204</td>
<td>Quantitative Chemistry Laboratory ² or General Chemistry Laboratory II for Students in Chemical Sciences</td>
<td>1</td>
</tr>
<tr>
<td>MA 241</td>
<td>Calculus II ¹</td>
<td>4</td>
</tr>
<tr>
<td>PY 205 & PY 209</td>
<td>Physics for Engineers and Scientists I and Physics for Engineers and Scientists I Laboratory ¹</td>
<td>4</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>ARE 201</td>
<td>Introduction to Agricultural & Resource Economics</td>
<td></td>
</tr>
<tr>
<td>ARE 201A</td>
<td>Introduction to Agricultural & Resource Economics</td>
<td></td>
</tr>
<tr>
<td>EC 201</td>
<td>Principles of Microeconomics</td>
<td></td>
</tr>
<tr>
<td>EC 205</td>
<td>Fundamentals of Economics</td>
<td></td>
</tr>
<tr>
<td>Second Year</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fall Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH 221 or CH 225</td>
<td>Organic Chemistry I ² or Organic Chemistry I for Students in Chemical Sciences</td>
<td>3</td>
</tr>
<tr>
<td>CH 222 or CH 226</td>
<td>Organic Chemistry I Lab ² or Organic Chemistry Laboratory I for Students in Chemical Sciences</td>
<td>1</td>
</tr>
<tr>
<td>CHE 205</td>
<td>Chemical Process Principles ²</td>
<td>4</td>
</tr>
<tr>
<td>MA 242</td>
<td>Calculus III ²</td>
<td>4</td>
</tr>
<tr>
<td>Spring Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH 223 or CH 227</td>
<td>Organic Chemistry II or Organic Chemistry II for Students in Chemical Sciences</td>
<td>3</td>
</tr>
<tr>
<td>CH 224 or CH 228</td>
<td>Organic Chemistry II Lab or Organic Chemistry Laboratory II for Students in Chemical Sciences</td>
<td>1</td>
</tr>
<tr>
<td>CHE 225</td>
<td>Introduction to Chemical Engineering Analysis ²</td>
<td>3</td>
</tr>
<tr>
<td>MA 341</td>
<td>Applied Differential Equations ²</td>
<td>3</td>
</tr>
<tr>
<td>PY 208 & PY 209</td>
<td>Physics for Engineers and Scientists II and Physics for Engineers and Scientists II Laboratory</td>
<td>4</td>
</tr>
<tr>
<td>Third Year</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fall Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH 315 & CH 316</td>
<td>Quantitative Analysis and Quantitative Analysis Laboratory</td>
<td>4</td>
</tr>
<tr>
<td>CHE 311</td>
<td>Transport Processes I ²</td>
<td>3</td>
</tr>
<tr>
<td>CHE 315</td>
<td>Chemical Process Thermodynamics ²</td>
<td>3</td>
</tr>
<tr>
<td>Select one of the following Mathematics Electives:</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>MA 401</td>
<td>Applied Differential Equations II</td>
<td></td>
</tr>
<tr>
<td>MA 402</td>
<td>Mathematics of Scientific Computing</td>
<td></td>
</tr>
<tr>
<td>MA 405</td>
<td>Introduction to Linear Algebra</td>
<td></td>
</tr>
<tr>
<td>MA 427</td>
<td>Introduction to Numerical Analysis I</td>
<td></td>
</tr>
<tr>
<td>MA 501</td>
<td>Advanced Mathematics for Engineers and Scientists I</td>
<td></td>
</tr>
<tr>
<td>CHE 395</td>
<td>Professional Development Seminar</td>
<td>1</td>
</tr>
<tr>
<td>Spring Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Select one of the following Chemistry Electives:</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>PCC 464</td>
<td>Chemistry of Polymeric Materials Laboratory</td>
<td></td>
</tr>
<tr>
<td>BCH 351</td>
<td>General Biochemistry</td>
<td></td>
</tr>
<tr>
<td>BCH 451</td>
<td>Principles of Biochemistry</td>
<td></td>
</tr>
<tr>
<td>CH 437</td>
<td>Physical Chemistry for Engineers</td>
<td></td>
</tr>
<tr>
<td>CH 610</td>
<td>Special Topics In Chemistry</td>
<td></td>
</tr>
<tr>
<td>BIO 183</td>
<td>Introductory Biology: Cellular and Molecular Biology</td>
<td></td>
</tr>
<tr>
<td>FS 402</td>
<td>Chemistry of Food and Bioprocessed Materials</td>
<td></td>
</tr>
</tbody>
</table>

E 102 Engineering in the 21st Century 2

Hours 17

Chemical Engineering (BS): Honors Concentration

To see more about what you will learn in this program, visit the Learning Outcomes website (https://apps.oirp.ncsu.edu/pgas/)

The Honors Program allows students to gain a deeper understanding of chemical engineering principles than would be acquired by completing the standard CHE curriculum. Admission to the program requires students to have earned a minimum overall GPA of 3.5 and a minimum GPA of 3.5 in CHE 205 Chemical Process Principles and CHE 225 Introduction to Chemical Engineering Analysis. An honors thesis based on a supervised research experience and completion of at least one semester of faculty-supervised research are required for completion of the Honors Program.

Plan Requirements

Chemical Engineering (BS): Honors Concentration: 127 Total Units

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Year</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fall Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH 101 or CH 103</td>
<td>Chemistry - A Molecular Science ¹ or General Chemistry I for Students in Chemical Sciences</td>
<td>3</td>
</tr>
<tr>
<td>CH 102 or CH 104</td>
<td>General Chemistry Laboratory ¹ or General Chemistry Laboratory I for Students in Chemical Sciences</td>
<td>1</td>
</tr>
<tr>
<td>E 101</td>
<td>Introduction to Engineering & Problem Solving ²</td>
<td>1</td>
</tr>
<tr>
<td>E 115</td>
<td>Introduction to Computing Environments</td>
<td>1</td>
</tr>
<tr>
<td>MA 141</td>
<td>Calculus I ¹</td>
<td>4</td>
</tr>
<tr>
<td>ENG 101</td>
<td>Academic Writing and Research ²</td>
<td>4</td>
</tr>
<tr>
<td>Spring Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH 201 or CH 203</td>
<td>Chemistry - A Quantitative Science ² or General Chemistry II for Students in Chemical Sciences</td>
<td>3</td>
</tr>
<tr>
<td>CH 202 or CH 204</td>
<td>Quantitative Chemistry Laboratory ² or General Chemistry Laboratory II for Students in Chemical Sciences</td>
<td>1</td>
</tr>
<tr>
<td>MA 241</td>
<td>Calculus II ¹</td>
<td>4</td>
</tr>
<tr>
<td>PY 205 & PY 209</td>
<td>Physics for Engineers and Scientists I and Physics for Engineers and Scientists I Laboratory ¹</td>
<td>4</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>ARE 201</td>
<td>Introduction to Agricultural & Resource Economics</td>
<td></td>
</tr>
<tr>
<td>ARE 201A</td>
<td>Introduction to Agricultural & Resource Economics</td>
<td></td>
</tr>
<tr>
<td>EC 201</td>
<td>Principles of Microeconomics</td>
<td></td>
</tr>
<tr>
<td>EC 205</td>
<td>Fundamentals of Economics</td>
<td></td>
</tr>
<tr>
<td>Second Year</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fall Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH 221 or CH 225</td>
<td>Organic Chemistry I ² or Organic Chemistry I for Students in Chemical Sciences</td>
<td>3</td>
</tr>
<tr>
<td>CH 222 or CH 226</td>
<td>Organic Chemistry I Lab ² or Organic Chemistry Laboratory I for Students in Chemical Sciences</td>
<td>1</td>
</tr>
<tr>
<td>CHE 205</td>
<td>Chemical Process Principles ²</td>
<td>4</td>
</tr>
<tr>
<td>MA 242</td>
<td>Calculus III ²</td>
<td>4</td>
</tr>
<tr>
<td>Spring Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH 223 or CH 227</td>
<td>Organic Chemistry II or Organic Chemistry II for Students in Chemical Sciences</td>
<td>3</td>
</tr>
<tr>
<td>CH 224 or CH 228</td>
<td>Organic Chemistry II Lab or Organic Chemistry Laboratory II for Students in Chemical Sciences</td>
<td>1</td>
</tr>
<tr>
<td>CHE 225</td>
<td>Introduction to Chemical Engineering Analysis ²</td>
<td>3</td>
</tr>
<tr>
<td>MA 341</td>
<td>Applied Differential Equations ²</td>
<td>3</td>
</tr>
<tr>
<td>PY 208 & PY 209</td>
<td>Physics for Engineers and Scientists II and Physics for Engineers and Scientists II Laboratory</td>
<td>4</td>
</tr>
<tr>
<td>Third Year</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fall Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH 315 & CH 316</td>
<td>Quantitative Analysis and Quantitative Analysis Laboratory</td>
<td>4</td>
</tr>
<tr>
<td>CHE 311</td>
<td>Transport Processes I ²</td>
<td>3</td>
</tr>
<tr>
<td>CHE 315</td>
<td>Chemical Process Thermodynamics ²</td>
<td>3</td>
</tr>
<tr>
<td>Select one of the following Mathematics Electives:</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>MA 401</td>
<td>Applied Differential Equations II</td>
<td></td>
</tr>
<tr>
<td>MA 402</td>
<td>Mathematics of Scientific Computing</td>
<td></td>
</tr>
<tr>
<td>MA 405</td>
<td>Introduction to Linear Algebra</td>
<td></td>
</tr>
<tr>
<td>MA 427</td>
<td>Introduction to Numerical Analysis I</td>
<td></td>
</tr>
<tr>
<td>MA 501</td>
<td>Advanced Mathematics for Engineers and Scientists I</td>
<td></td>
</tr>
<tr>
<td>CHE 395</td>
<td>Professional Development Seminar</td>
<td>1</td>
</tr>
<tr>
<td>Spring Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Select one of the following Chemistry Electives:</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>PCC 464</td>
<td>Chemistry of Polymeric Materials Laboratory</td>
<td></td>
</tr>
<tr>
<td>BCH 351</td>
<td>General Biochemistry</td>
<td></td>
</tr>
<tr>
<td>BCH 451</td>
<td>Principles of Biochemistry</td>
<td></td>
</tr>
<tr>
<td>CH 437</td>
<td>Physical Chemistry for Engineers</td>
<td></td>
</tr>
<tr>
<td>CH 610</td>
<td>Special Topics In Chemistry</td>
<td></td>
</tr>
<tr>
<td>BIO 183</td>
<td>Introductory Biology: Cellular and Molecular Biology</td>
<td></td>
</tr>
<tr>
<td>FS 402</td>
<td>Chemistry of Food and Bioprocessed Materials</td>
<td></td>
</tr>
</tbody>
</table>
CHE 312 Transport Processes II 3
CHE 316 Thermodynamics of Chemical and Phase Equilibria 3
CHE 330 Chemical Engineering Lab I 4
ENG 333 Communication for Science and Research 3

Total Hours 17

Fourth Year
Fall Semester
CHE 446 Design and Analysis of Chemical Reactors 3
CHE 450 Chemical Engineering Design I 3
CHE 497 Chemical Engineering Projects I 3

Select one of the following:
CHE 711 Chemical Engineering Process Modeling 3
CHE 713 Thermodynamics I 3
CHE 715 Transport Phenomena 3
CHE 717 Chemical Reaction Engineering 3

Spring Semester
CHE 435 Process Systems Analysis and Control 3
CHE 451 Chemical Engineering Design II 3
Honors Elective 3
CHE 495 Honors Thesis Preparation 1

Total Hours 12

1 A grade of C or higher is required.
2 A grade of C- or higher is required.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BEC 462</td>
<td>Fundamentals of Bio-Nanotechnology</td>
<td>3</td>
</tr>
<tr>
<td>BEC 463</td>
<td>Fermentation of Recombinant Microorganisms</td>
<td>2</td>
</tr>
<tr>
<td>BEC 488</td>
<td>Animal Cell Culture Engineering</td>
<td>2</td>
</tr>
<tr>
<td>BEC 562</td>
<td>Fundamentals of Bio-Nanotechnology</td>
<td>3</td>
</tr>
<tr>
<td>BEC 563</td>
<td>Fermentation of Recombinant Microorganisms</td>
<td>2</td>
</tr>
<tr>
<td>BEC 577</td>
<td>Advanced Biomanufacturing and Biocatalysis</td>
<td>3</td>
</tr>
<tr>
<td>BIT 463</td>
<td>Fermentation of Recombinant Microorganisms</td>
<td>2</td>
</tr>
<tr>
<td>BIT 464</td>
<td>Protein Purification</td>
<td>2</td>
</tr>
<tr>
<td>BIT 563</td>
<td>Fermentation of Recombinant Microorganisms</td>
<td>2</td>
</tr>
<tr>
<td>BIT 564</td>
<td>Protein Purification</td>
<td>2</td>
</tr>
<tr>
<td>CHE 460</td>
<td>Nano-Electronic Materials</td>
<td>3</td>
</tr>
<tr>
<td>CHE 461</td>
<td>Polymer Sciences and Technology</td>
<td>3</td>
</tr>
<tr>
<td>CHE 462</td>
<td>Fundamentals of Bio-Nanotechnology</td>
<td>3</td>
</tr>
<tr>
<td>CHE 463</td>
<td>Fermentation of Recombinant Microorganisms</td>
<td>2</td>
</tr>
<tr>
<td>CHE 465</td>
<td>Colloidal and Nanoscale Engineering</td>
<td>3</td>
</tr>
<tr>
<td>CHE 467</td>
<td>Polymer Rheology</td>
<td>3</td>
</tr>
<tr>
<td>CHE 468</td>
<td>Conventional and Emerging Nanomanufacturing Techniques and Their Applications in Nanosystems</td>
<td>3</td>
</tr>
<tr>
<td>CHE 475</td>
<td>Advances in Pollution Prevention: Environmental Management for the Future</td>
<td>3</td>
</tr>
<tr>
<td>CHE 488</td>
<td>Animal Cell Culture Engineering</td>
<td>2</td>
</tr>
<tr>
<td>CHE 495</td>
<td>Honors Thesis Preparation</td>
<td>1</td>
</tr>
<tr>
<td>CHE 497</td>
<td>Chemical Engineering Projects I</td>
<td>3</td>
</tr>
<tr>
<td>CHE 498</td>
<td>Chemical Engineering Projects II</td>
<td>1-3</td>
</tr>
<tr>
<td>CHE 525</td>
<td>Process System Analysis and Control</td>
<td>3</td>
</tr>
<tr>
<td>CHE 543</td>
<td>Polymer Science and Technology</td>
<td>3</td>
</tr>
<tr>
<td>CHE 546</td>
<td>Design and Analysis of Chemical Reactors</td>
<td>3</td>
</tr>
<tr>
<td>CHE 551</td>
<td>Biochemical Engineering</td>
<td>3</td>
</tr>
<tr>
<td>CHE 560</td>
<td>Chemical Processing Of Electronic Materials</td>
<td>3</td>
</tr>
<tr>
<td>CHE 562</td>
<td>Fundamentals of Bio-Nanotechnology</td>
<td>3</td>
</tr>
<tr>
<td>CHE 563</td>
<td>Fermentation of Recombinant Microorganisms</td>
<td>2</td>
</tr>
<tr>
<td>CHE 568</td>
<td>Conventional and Emerging Nanomanufacturing Techniques and Their Applications in Nanosystems</td>
<td>3</td>
</tr>
<tr>
<td>CHE 575</td>
<td>Advances in Pollution Prevention: Environmental Management for the Future</td>
<td>3</td>
</tr>
<tr>
<td>CHE 577</td>
<td>Advanced Biomanufacturing and Biocatalysis</td>
<td>3</td>
</tr>
<tr>
<td>CHE 596</td>
<td>Special Topics in Chemical Engineering</td>
<td>1-3</td>
</tr>
<tr>
<td>CHE 597</td>
<td>Chemical Engineering Projects</td>
<td>1-3</td>
</tr>
<tr>
<td>CHE 711</td>
<td>Chemical Engineering Process Modeling</td>
<td>3</td>
</tr>
<tr>
<td>CHE 713</td>
<td>Thermodynamics I</td>
<td>3</td>
</tr>
<tr>
<td>CHE 715</td>
<td>Transport Phenomena</td>
<td>3</td>
</tr>
<tr>
<td>CHE 717</td>
<td>Chemical Reaction Engineering</td>
<td>3</td>
</tr>
<tr>
<td>CHE 718</td>
<td>Advanced Chemical Reaction Engineering</td>
<td>3</td>
</tr>
<tr>
<td>CHE 719</td>
<td>Electrochemical Systems Analysis</td>
<td>3</td>
</tr>
<tr>
<td>CHE 752</td>
<td>Separation Processes For Biological Materials</td>
<td>3</td>
</tr>
<tr>
<td>CHE 761</td>
<td>Polymer Blends and Alloys</td>
<td>3</td>
</tr>
<tr>
<td>CHE 796</td>
<td>Special Topics In Chemical Engineering</td>
<td>1-6</td>
</tr>
<tr>
<td>CHE 797</td>
<td>Chemical Engineering Projects</td>
<td>1-3</td>
</tr>
<tr>
<td>CHE 798</td>
<td>Advanced Chemical Engineering Projects</td>
<td>1-3</td>
</tr>
</tbody>
</table>

Total Hours 17
Semester Sequence

This is a sample.

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Year</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fall Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH 101</td>
<td>Chemistry - A Molecular Science</td>
<td>3</td>
</tr>
<tr>
<td>CH 102</td>
<td>General Chemistry Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>E 101</td>
<td>Introduction to Engineering & Problem Solving</td>
<td>1</td>
</tr>
<tr>
<td>E 115</td>
<td>Introduction to Computing Environments</td>
<td>1</td>
</tr>
<tr>
<td>ENG 101</td>
<td>Academic Writing and Research</td>
<td>4</td>
</tr>
<tr>
<td>MA 141</td>
<td>Calculus I</td>
<td>4</td>
</tr>
<tr>
<td>GEP Health and Exercise Studies (http://catalog.ncsu.edu/undergraduate/gep-category-requirements/gep-health-exercise-studies/)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hours</td>
<td>15</td>
</tr>
<tr>
<td>Spring Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH 201</td>
<td>Chemistry - A Quantitative Science</td>
<td>3</td>
</tr>
<tr>
<td>CH 202</td>
<td>Quantitative Chemistry Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>MA 241</td>
<td>Calculus II</td>
<td>4</td>
</tr>
<tr>
<td>PY 205</td>
<td>Physics for Engineers and Scientists I</td>
<td>3</td>
</tr>
<tr>
<td>PY 206</td>
<td>Physics for Engineers and Scientists I Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>EC 205</td>
<td>Fundamentals of Economics</td>
<td></td>
</tr>
<tr>
<td>EC 201</td>
<td>Principles of Microeconomics</td>
<td></td>
</tr>
<tr>
<td>ARE 201</td>
<td>Introduction to Agricultural & Resource Economics</td>
<td></td>
</tr>
<tr>
<td>GEP Health and Exercise Studies (http://catalog.ncsu.edu/undergraduate/gep-category-requirements/gep-health-exercise-studies/)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>E 102</td>
<td>Engineering in the 21st Century</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Hours</td>
<td>18</td>
</tr>
<tr>
<td>Second Year</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fall Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH 221</td>
<td>Organic Chemistry I</td>
<td>3</td>
</tr>
<tr>
<td>CH 222</td>
<td>Organic Chemistry I Lab</td>
<td>1</td>
</tr>
<tr>
<td>CHE 205</td>
<td>Chemical Process Principles</td>
<td>4</td>
</tr>
<tr>
<td>MA 242</td>
<td>Calculus III</td>
<td>4</td>
</tr>
<tr>
<td>GEP Requirement (http://catalog.ncsu.edu/undergraduate/gep-category-requirements/)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hours</td>
<td>15</td>
</tr>
<tr>
<td>Spring Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH 223</td>
<td>Organic Chemistry II</td>
<td>3</td>
</tr>
<tr>
<td>CH 224</td>
<td>Organic Chemistry II Lab</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Hours</td>
<td>15</td>
</tr>
<tr>
<td>Third Year</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fall Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH 315</td>
<td>Quantitative Analysis</td>
<td>3</td>
</tr>
<tr>
<td>CH 316</td>
<td>Quantitative Analysis Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>CHE 311</td>
<td>Transport Processes I</td>
<td>3</td>
</tr>
<tr>
<td>CHE 315</td>
<td>Chemical Process Thermodynamics</td>
<td>3</td>
</tr>
<tr>
<td>Select one of the following Mathematics Electives:</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>MA 401</td>
<td>Applied Differential Equations I</td>
<td></td>
</tr>
<tr>
<td>MA 402</td>
<td>Mathematics of Scientific Computing</td>
<td></td>
</tr>
<tr>
<td>MA 405</td>
<td>Introduction to Linear Algebra</td>
<td></td>
</tr>
<tr>
<td>MA 427</td>
<td>Introduction to Numerical Analysis I</td>
<td></td>
</tr>
<tr>
<td>MA 501</td>
<td>Advanced Mathematics for Engineers and Scientists I</td>
<td></td>
</tr>
<tr>
<td>GEP Requirement (http://catalog.ncsu.edu/undergraduate/gep-category-requirements/)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CHE 395</td>
<td>Professional Development Seminar</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Hours</td>
<td>17</td>
</tr>
<tr>
<td>Spring Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Select one of the following Chemistry Electives:</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>PCC 464</td>
<td>Chemistry of Polymeric Materials Laboratory</td>
<td></td>
</tr>
<tr>
<td>BCH 351</td>
<td>General Biochemistry</td>
<td></td>
</tr>
<tr>
<td>BCH 451</td>
<td>Principles of Biochemistry</td>
<td></td>
</tr>
<tr>
<td>CH 437</td>
<td>Physical Chemistry for Engineers</td>
<td></td>
</tr>
<tr>
<td>CH 610</td>
<td>Special Topics In Chemistry</td>
<td></td>
</tr>
<tr>
<td>BIO 183</td>
<td>Introductory Biology: Cellular and Molecular Biology</td>
<td></td>
</tr>
<tr>
<td>FS 402</td>
<td>Chemistry of Food and Bioprocessed Materials</td>
<td></td>
</tr>
<tr>
<td>CHE 312</td>
<td>Transport Processes II</td>
<td>3</td>
</tr>
<tr>
<td>CHE 316</td>
<td>Thermodynamics of Chemical and Phase Equilibria</td>
<td>3</td>
</tr>
<tr>
<td>CHE 330</td>
<td>Chemical Engineering Lab I</td>
<td>4</td>
</tr>
<tr>
<td>ENG 333</td>
<td>Communication for Science and Research</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Hours</td>
<td>17</td>
</tr>
<tr>
<td>Fourth Year</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fall Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHE 497</td>
<td>Chemical Engineering Projects I</td>
<td>3</td>
</tr>
<tr>
<td>CHE 446</td>
<td>Design and Analysis of Chemical Reactors</td>
<td>3</td>
</tr>
<tr>
<td>CHE 450</td>
<td>Chemical Engineering Design I</td>
<td>3</td>
</tr>
<tr>
<td>Select one of the following CHE Electives:</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>CHE 711</td>
<td>Chemical Engineering Process Modeling</td>
<td></td>
</tr>
<tr>
<td>CHE 713</td>
<td>Thermodynamics I</td>
<td></td>
</tr>
<tr>
<td>CHE 715</td>
<td>Transport Phenomena</td>
<td></td>
</tr>
</tbody>
</table>
Career Opportunities

Careers in chemical engineering are sometimes exciting, always demanding, and ultimately provide a sense of accomplishment and achievement. Graduates find employment in sub-disciplines such as production, technical service, sales, management and administration; research and development; and consulting and teaching. Students desiring careers in teaching, research, or consulting are encouraged to continue their education and pursue a graduate degree (consult the Graduate Catalog). The undergraduate curriculum also provides strong preparation for graduate study in a wide range of professional specialties, and chemical engineering graduates often pursue careers in the medical sciences, business management, and law.