Many of the students are involved in the department’s student clubs, such as the Aerial Robotics and Rocketry clubs that compete regionally and regularly place in the top 3.

Aerospace engineering undergraduates are employed by the aerospace industries and other industries with similar technical problems. Many of our students enter graduate school after which they are employed by these same industries and by government laboratories such as NASA, NAVAIR, and the Air Force.

Mechanical

Mechanical engineering applies mechanical, thermal, and fluid principles to research, design, development, testing, manufacture, and operation of products and systems. Mechanical engineering is the broadest of the engineering programs, providing a technological foundation that serves societal needs in energy, health, safety, and all walks of life. Mechanical engineers solve problems dealing with energy and environmental systems (alternative fuels and renewable technologies), advanced materials and manufacturing (precision metrology, smart materials, and auto-adaptive materials), robotics and sensor technologies (opto-mechanical systems, MEMS, energy harvesting, human-centric and bio-inspired intelligent systems), and transportation (automotive and high-speed rail).

In addition to taking strong foundational courses, mechanical engineering students gain experience in experimental laboratories for measurement and data analysis, performance evaluation of thermal systems, and testing and analysis of mechanical components. The senior design experience is a distinctive joint departmental-industry effort in which students solve industry-sponsored problems by designing, building, and testing prototype machines with the support of facilities for machining and electronics. Many of the students are involved in the department’s student clubs, such as its Eco car and SAE car clubs that compete internationally and regularly place in the top 10.

Because of the discipline’s wide breadth, mechanical engineering students have a wide variety of employment opportunities. Undergraduate students enter engineering fields that deal with, to varying levels, design, development, manufacturing, plant operation, testing and experimentation, consulting, sales and service. The employers come from industry, government and service organizations. Many of the undergraduate students go on to graduate school to pursue advanced degrees in engineering, science or business, as well as professional degree programs such as medicine, accounting and law.

Faculty

Department Head

S. V. Ekkad

Associate Department Head

K. Peters

J.R. Edwards

Director of Graduate Programs

K. Peters

Aerospace engineering undergraduates are employed by the aerospace industries and other industries with similar technical problems. Many of our students enter graduate school after which they are employed by these same industries and by government laboratories such as NASA, NAVAIR, and the Air Force.

Mechanical

Mechanical engineering applies mechanical, thermal, and fluid principles to research, design, development, testing, manufacture, and operation of products and systems. Mechanical engineering is the broadest of the engineering programs, providing a technological foundation that serves societal needs in energy, health, safety, and all walks of life. Mechanical engineers solve problems dealing with energy and environmental systems (alternative fuels and renewable technologies), advanced materials and manufacturing (precision metrology, smart materials, and auto-adaptive materials), robotics and sensor technologies (opto-mechanical systems, MEMS, energy harvesting, human-centric and bio-inspired intelligent systems), and transportation (automotive and high-speed rail).

In addition to taking strong foundational courses, mechanical engineering students gain experience in experimental laboratories for measurement and data analysis, performance evaluation of thermal systems, and testing and analysis of mechanical components. The senior design experience is a distinctive joint departmental-industry effort in which students solve industry-sponsored problems by designing, building, and testing prototype machines with the support of facilities for machining and electronics. Many of the students are involved in the department’s student clubs, such as its Eco car and SAE car clubs that compete internationally and regularly place in the top 10.

Because of the discipline’s wide breadth, mechanical engineering students have a wide variety of employment opportunities. Undergraduate students enter engineering fields that deal with, to varying levels, design, development, manufacturing, plant operation, testing and experimentation, consulting, sales and service. The employers come from industry, government and service organizations. Many of the undergraduate students go on to graduate school to pursue advanced degrees in engineering, science or business, as well as professional degree programs such as medicine, accounting and law.

Faculty

Department Head

S. V. Ekkad

Associate Department Head

K. Peters

J.R. Edwards

Director of Graduate Programs

K. Peters

Aerospace engineering undergraduates are employed by the aerospace industries and other industries with similar technical problems. Many of our students enter graduate school after which they are employed by these same industries and by government laboratories such as NASA, NAVAIR, and the Air Force.

Mechanical

Mechanical engineering applies mechanical, thermal, and fluid principles to research, design, development, testing, manufacture, and operation of products and systems. Mechanical engineering is the broadest of the engineering programs, providing a technological foundation that serves societal needs in energy, health, safety, and all walks of life. Mechanical engineers solve problems dealing with energy and environmental systems (alternative fuels and renewable technologies), advanced materials and manufacturing (precision metrology, smart materials, and auto-adaptive materials), robotics and sensor technologies (opto-mechanical systems, MEMS, energy harvesting, human-centric and bio-inspired intelligent systems), and transportation (automotive and high-speed rail).

In addition to taking strong foundational courses, mechanical engineering students gain experience in experimental laboratories for measurement and data analysis, performance evaluation of thermal systems, and testing and analysis of mechanical components. The senior design experience is a distinctive joint departmental-industry effort in which students solve industry-sponsored problems by designing, building, and testing prototype machines with the support of facilities for machining and electronics. Many of the students are involved in the department’s student clubs, such as its Eco car and SAE car clubs that compete internationally and regularly place in the top 10.

Because of the discipline’s wide breadth, mechanical engineering students have a wide variety of employment opportunities. Undergraduate students enter engineering fields that deal with, to varying levels, design, development, manufacturing, plant operation, testing and experimentation, consulting, sales and service. The employers come from industry, government and service organizations. Many of the undergraduate students go on to graduate school to pursue advanced degrees in engineering, science or business, as well as professional degree programs such as medicine, accounting and law.

Faculty

Department Head

S. V. Ekkad

Associate Department Head

K. Peters

J.R. Edwards

Director of Graduate Programs

K. Peters
Director of Undergraduate Programs
J.R. Edwards

Director of Undergraduate Student Affairs
J.W. Eischen

Alumni Distinguished Graduate Professor
F.R. DeJarnette

Duncan Distinguished University Professor
T.A. Dow

R. J. Reynolds Professor
S. V. Ekkad

Samuel P. Langley Distinguished Professor
F.-G. Yuan

Zan Prevost Smith Professor
M. A. Zikry

Angel Family Professor
J. R. Edwards

Professor Emeriti
J. Bailey
M. A. Boles
F. DeJarnette
H.M. Eckerlin
F. J. Hale
F. D. Hart
T. H. Hodgson
R. R. Johnson
J. W. Leach
C. J. Maday
D. S. McRae
J. C. Mulligan
R.T. Nagel
F. Y. Sorrell

C. F. Zorowski

Professors
G.D. Buckner
T. A. Dow
T. Echekki
J. Edwards
S. V. Ekkad
T. Fang
A. Gopalarathnam
R. Gould
X. Jiang
R.F. Keltie
C. Kleinstreuer
A.V. Kuznetsov
H. Luo
K.M. Lyons
G. Ngaile
K. Peters
A. Rabiei
L.M. Silverberg
J.S. Strenkowski
J. Tu
F. Wu
F.G. Yuan
Y. Zhu
M. Zikry

Associate Professor
C.-H. Chang
J.W. Eischen
S. Ferguson
C. Hall
H.-Y. Huang
Y. Jing
A. Mazzoleni
V. Narayanaswamy
B.T. O'Connor
K. Saul
A. Saveliev
C. Vermillion
C. Xu

Assistant Professor
M. Bryant
L. Grace
K. Granlund
J. Liu
M. Muller
M. Pankow
J. Ryu
P. Subbareddy

Research Assistant Professor
S.D. Terry

Teaching Associate Professor
A. Howard
C.M. Tran

Teaching Assistant Professor
F. Ewere
B. Fortney
S. Hollar
N. Moore
S. Narsipur

Adjunct Associate Professor
P. Corson

Lecturer
C. H. Tran

Eastern Regional Director for Engineering
B. Fortney

Adjunct professor
M. Reyhanoglu

Plans
• Aerospace Engineering (BS) (http://catalog.ncsu.edu/undergraduate/engineering/mechanical-aerospace/aerospace-engineering-bs/)
• Mechanical Engineering (BS) (http://catalog.ncsu.edu/undergraduate/engineering/mechanical-aerospace/mechanical-engineering-bs/)

Honors Program in Mechanical and Aerospace Engineering
Students enter the mechanical and aerospace honors program by invitation. Students in these programs participate in special educational experiences involving deeper investigations into subjects and research projects.