Nuclear Engineering (BS)

To see more about what you will learn in this program, visit the Learning Outcomes website (https://apps.oirp.ncsu.edu/pgas/)

Nuclear engineers work in nuclear systems research, design, development, testing, operation, environmental protection, and marketing. The Bachelor of Science program prepares graduates for positions in industry, national laboratories, or for graduate study (consult the Graduate Catalog (http://www.ncsu.edu/grad/catalog/)). The curriculum incorporates basic sciences and engineering, with emphasis on mathematics and physics, followed by course work in nuclear science and technology. Design concepts are introduced in numerous nuclear engineering courses throughout the curriculum to provide an integrated educational experience, cap-stoned by senior nuclear projects involving reactors and radiation systems. Attention is also given to the efficient utilization of energy resources and to the environmental aspects of nuclear energy. Computers are widely used throughout the curriculum.

The nuclear engineering program is accredited by the Engineering Accreditation Commission of ABET, http://www.abet.org, and leads to the degree of Bachelor of Science in Nuclear Engineering. Advanced undergraduates who desire to attend graduate school at NC State may enter a combined 5-year BS/MNE professional program or BS/MS bachelor/master degree program during their senior year which will culminate at the end of their fifth year with both the Bachelor of Science in Nuclear Engineering and the Master of Nuclear Engineering or the Master of Science degrees, respectively.

Specific curriculum requirements are available online (https://www.acs.ncsu.edu/php/coursecat/degree_requirements.php). Information on health physics and nuclear engineering minors are available here (https://oucc.dasa.ncsu.edu/undergraduate-academic-programs/academic-minors/).

Plan Requirements
Nuclear Engineering (BS): 123 Total Units

First Year
Fall Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH 101</td>
<td>Chemistry - A Molecular Science 1</td>
<td>3</td>
</tr>
<tr>
<td>CH 102</td>
<td>General Chemistry Laboratory 1</td>
<td>1</td>
</tr>
<tr>
<td>E 101</td>
<td>Introduction to Engineering & Problem Solving 2</td>
<td>1</td>
</tr>
<tr>
<td>E 115</td>
<td>Introduction to Computing Environments 2</td>
<td>1</td>
</tr>
<tr>
<td>ENG 101</td>
<td>Academic Writing and Research 2</td>
<td>4</td>
</tr>
<tr>
<td>MA 141</td>
<td>Calculus I 1</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Hours</td>
<td>14</td>
</tr>
</tbody>
</table>

Spring Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSC 113</td>
<td>Introduction to Computing - MATLAB</td>
<td>3</td>
</tr>
<tr>
<td>MA 241</td>
<td>Calculus II 1</td>
<td>4</td>
</tr>
<tr>
<td>PY 205 & PY 206</td>
<td>Physics for Engineers and Scientists I Laboratory 1</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Select one of the following:</td>
<td></td>
</tr>
</tbody>
</table>

Second Year
Fall Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAE 206</td>
<td>Engineering Statics</td>
<td>3</td>
</tr>
<tr>
<td>MA 242</td>
<td>Calculus III</td>
<td>4</td>
</tr>
<tr>
<td>NE 201</td>
<td>Introduction to Nuclear Engineering</td>
<td>2</td>
</tr>
<tr>
<td>PY 208 & PY 209</td>
<td>Physics for Engineers and Scientists II Laboratory 2</td>
<td>4</td>
</tr>
</tbody>
</table>

| Advanced Communication Elective (p.) | 3 |
| **Hours** | **16**|

Spring Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAE 208</td>
<td>Engineering Dynamics</td>
<td>3</td>
</tr>
<tr>
<td>MA 341</td>
<td>Applied Differential Equations I</td>
<td>3</td>
</tr>
<tr>
<td>NE 202</td>
<td>Radiation Sources, Interaction and Detection 2</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Hours</td>
<td>10</td>
</tr>
</tbody>
</table>

Third Year
Fall Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAE 201</td>
<td>Engineering Thermodynamics I</td>
<td>3</td>
</tr>
<tr>
<td>MA 401</td>
<td>Applied Differential Equations II</td>
<td>3</td>
</tr>
<tr>
<td>NE 301</td>
<td>Fundamentals of Nuclear Engineering 2</td>
<td>3</td>
</tr>
<tr>
<td>ISE 311</td>
<td>Engineering Economic Analysis</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Hours</td>
<td>12</td>
</tr>
</tbody>
</table>

Spring Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAE 308</td>
<td>Fluid Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>MSE 201</td>
<td>Structure and Properties of Engineering Materials</td>
<td>3</td>
</tr>
<tr>
<td>NE 400</td>
<td>Nuclear Reactor Energy Conversion</td>
<td>4</td>
</tr>
<tr>
<td>NE 401</td>
<td>Reactor Analysis and Design</td>
<td>3</td>
</tr>
<tr>
<td>NE 403</td>
<td>Nuclear Reactor Laboratory</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

Fourth Year
Fall Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>NE 402</td>
<td>Reactor Engineering</td>
<td>4</td>
</tr>
<tr>
<td>NE 404</td>
<td>Radiation Safety and Shielding</td>
<td>3</td>
</tr>
<tr>
<td>NE 406</td>
<td>Nuclear Engineering Senior Design Preparation</td>
<td>1</td>
</tr>
<tr>
<td>NE Elective (p.)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Technical Elective (p.)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Hours</td>
<td>14</td>
</tr>
</tbody>
</table>

Spring Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>NE 405</td>
<td>Reactor Systems</td>
<td>3</td>
</tr>
<tr>
<td>NE 408</td>
<td>Nuclear Engineering Design Project</td>
<td>3</td>
</tr>
</tbody>
</table>
Engineering Technical Elective (p.) 3

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENG 316</td>
<td>Introduction to News and Article Writing</td>
<td>3</td>
</tr>
<tr>
<td>ENG 331</td>
<td>Communication for Engineering and Technology</td>
<td>3</td>
</tr>
<tr>
<td>ENG 332</td>
<td>Communication for Business and Management</td>
<td>3</td>
</tr>
<tr>
<td>ENG 333</td>
<td>Communication for Science and Research</td>
<td>3</td>
</tr>
<tr>
<td>FLA 201</td>
<td>Intermediate Arabic I</td>
<td>3</td>
</tr>
<tr>
<td>FLA 202</td>
<td>Intermediate Arabic II</td>
<td>3</td>
</tr>
<tr>
<td>FLC 201</td>
<td>Intermediate Chinese I</td>
<td>3</td>
</tr>
<tr>
<td>FLC 202</td>
<td>Intermediate Chinese II</td>
<td>3</td>
</tr>
<tr>
<td>FLF 201</td>
<td>Intermediate French I</td>
<td>3</td>
</tr>
<tr>
<td>FLF 202</td>
<td>Intermediate French II</td>
<td>3</td>
</tr>
<tr>
<td>FLG 201</td>
<td>Intermediate German I</td>
<td>3</td>
</tr>
<tr>
<td>FLG 202</td>
<td>Intermediate German II</td>
<td>3</td>
</tr>
<tr>
<td>FLI 201</td>
<td>Intermediate Italian I</td>
<td>3</td>
</tr>
<tr>
<td>FLI 202</td>
<td>Intermediate Italian II</td>
<td>3</td>
</tr>
<tr>
<td>FLJ 201</td>
<td>Intermediate Japanese I</td>
<td>3</td>
</tr>
<tr>
<td>FLJ 202</td>
<td>Intermediate Japanese II</td>
<td>3</td>
</tr>
<tr>
<td>FLJ 203</td>
<td>Intermediate Japanese Conversation</td>
<td>1</td>
</tr>
<tr>
<td>FLJ 204</td>
<td>Intermediate Japanese II Conversation</td>
<td>1</td>
</tr>
<tr>
<td>FLN 201</td>
<td>Intermediate Hindi-Urdu I</td>
<td>3</td>
</tr>
<tr>
<td>FLN 202</td>
<td>Intermediate Hindi-Urdu II</td>
<td>3</td>
</tr>
<tr>
<td>FLP 201</td>
<td>Intermediate Portuguese</td>
<td>3</td>
</tr>
<tr>
<td>FLR 201</td>
<td>Intermediate Russian I</td>
<td>3</td>
</tr>
<tr>
<td>FLR 202</td>
<td>Intermediate Russian II</td>
<td>3</td>
</tr>
<tr>
<td>FLS 201</td>
<td>Intermediate Spanish I</td>
<td>3</td>
</tr>
<tr>
<td>FLS 202</td>
<td>Intermediate Spanish II</td>
<td>3</td>
</tr>
</tbody>
</table>

1. A grade of C or higher is required.
2. A grade of C- or higher is required.

Total Hours 106

Advanced Communication Elective

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>COM 110</td>
<td>Public Speaking</td>
<td>3</td>
</tr>
<tr>
<td>COM 112</td>
<td>Interpersonal Communication</td>
<td>3</td>
</tr>
<tr>
<td>COM 211</td>
<td>Argumentation and Advocacy</td>
<td>3</td>
</tr>
<tr>
<td>ENG 288</td>
<td>Fiction Writing</td>
<td>3</td>
</tr>
<tr>
<td>ENG 289</td>
<td>Poetry Writing</td>
<td>3</td>
</tr>
<tr>
<td>Code</td>
<td>Title</td>
<td>Hours</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>-------</td>
</tr>
<tr>
<td>GRK 201</td>
<td>Intermediate Greek I</td>
<td>3</td>
</tr>
<tr>
<td>GRK 202</td>
<td>Intermediate Greek II</td>
<td>3</td>
</tr>
<tr>
<td>LAT 201</td>
<td>Intermediate Latin I</td>
<td>3</td>
</tr>
<tr>
<td>LAT 202</td>
<td>Intermediate Latin II</td>
<td>3</td>
</tr>
<tr>
<td>PER 201</td>
<td>Intermediate Persian I</td>
<td>3</td>
</tr>
<tr>
<td>PER 202</td>
<td>Intermediate Persian II</td>
<td>3</td>
</tr>
</tbody>
</table>

NE Electives

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Hours</th>
<th>Counts towards</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSE 409</td>
<td>Nuclear Materials</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>MSE 509</td>
<td>Nuclear Materials</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>NE 409</td>
<td>Nuclear Materials</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>NE 412</td>
<td>Nuclear Fuel Cycles</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>NE 418</td>
<td>Nuclear Power Plant Instrumentation</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>NE 509</td>
<td>Nuclear Materials</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>NE 512</td>
<td>Nuclear Fuel Cycles</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>NE 521</td>
<td>Principles of Radiation Measurement</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>NE 528</td>
<td>Introduction to Plasma Physics and Fusion Energy</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>PY 528</td>
<td>Introduction to Plasma Physics and Fusion Energy</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Technical Electives

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Hours</th>
<th>Counts towards</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH 315</td>
<td>Quantitative Analysis</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CH 331</td>
<td>Introductory Physical Chemistry</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>CSC 302</td>
<td>Introduction to Numerical Methods</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CSC 427</td>
<td>Introduction to Numerical Analysis I</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>MA 405</td>
<td>Introduction to Linear Algebra</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>MA 427</td>
<td>Introduction to Numerical Analysis I</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Engineering Technical Electives

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Hours</th>
<th>Counts towards</th>
</tr>
</thead>
<tbody>
<tr>
<td>BME 217</td>
<td>Biomedical Electronics Laboratory</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>BME 301</td>
<td>Human Physiology: Electrical Analysis</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>BME 302</td>
<td>Human Physiology: Mechanical Analysis</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>BME 315</td>
<td>Biotransport</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>BME 325</td>
<td>Biochemistry for Biomedical Engineers</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>BME 335</td>
<td>Biomaterials</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>BME 342</td>
<td>Analytical and Experimental Methods for Biomedical Engineers</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>BME 345</td>
<td>Biomedical Solid Mechanics</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>BME 355</td>
<td>Biocontrols</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>BME 365</td>
<td>Linear Systems in Biomedical Engineering</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>BME 375</td>
<td>Biomedical Microcontroller Applications</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>BME 385</td>
<td>Bioinstrumentation</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>Credits</td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>BME 398</td>
<td>Biomedical Engineering Design and Manufacturing II</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>BME 462</td>
<td>Biomaterials Characterization</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CE 301</td>
<td>Civil Engineering Surveying and Geomatics</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CE 305</td>
<td>Introduction to Transportation Engineering</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CE 324</td>
<td>Structural Behavior Measurement</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>CE 325</td>
<td>Structural Analysis I</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CE 327</td>
<td>Reinforced Concrete Design</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CE 332</td>
<td>Civil Engineering Materials</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CE 339</td>
<td>Civil Engineering Systems</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CE 342</td>
<td>Engineering Behavior of Soils and Foundations</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>CE 365</td>
<td>Construction Equipment and Methods</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CE 367</td>
<td>Mechanical and Electrical Systems in Buildings</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CE 373</td>
<td>Fundamentals of Environmental Engineering</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CE 378</td>
<td>Environmental Chemistry and Microbiology</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>CE 381</td>
<td>Hydraulics Systems Measurements Lab</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>CE 383</td>
<td>Hydrology and Urban Water Systems</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CE 390</td>
<td>Engineering Economics</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>CE 437</td>
<td>Civil Engineering Computing</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CHE 311</td>
<td>Transport Processes I</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CHE 312</td>
<td>Transport Processes II</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CHE 315</td>
<td>Chemical Process Thermodynamics</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CHE 316</td>
<td>Thermodynamics of Chemical and Phase Equilibria</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CHE 330</td>
<td>Chemical Engineering Lab I</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>CHE 331</td>
<td>Chemical Engineering Lab II</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>CHE 395</td>
<td>Professional Development Seminar</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>ECE 301</td>
<td>Linear Systems</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ECE 302</td>
<td>Microelectronics</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>ECE 303</td>
<td>Electromagnetic Fields</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ECE 305</td>
<td>Principles of Electromechanical Energy Conversion</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ECE 306</td>
<td>Introduction to Embedded Systems</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ECE 308</td>
<td>Elements of Control Systems</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ECE 309</td>
<td>Data Structures and Object-Oriented Programming</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ECE 310</td>
<td>Design of Complex Digital Systems</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ECE 331</td>
<td>Principles of Electrical Engineering</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ECE 380</td>
<td>Engineering Profession for Electrical Engineers</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>ECE 381</td>
<td>Engineering Profession for Computer Engineers</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>ECE 383</td>
<td>Introduction to Entrepreneurship and New Product Development</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>ECE 384</td>
<td>Practical Engineering Prototyping</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISE 311</td>
<td>Engineering Economic Analysis</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ISE 315</td>
<td>Introduction to Computer-Aided Manufacturing</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>Credits</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>ISE 316</td>
<td>Manufacturing Engineering I - Processes</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ISE 352</td>
<td>Fundamentals of Human-Machine Systems Design</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ISE 361</td>
<td>Deterministic Models in Industrial Engineering</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ISE 362</td>
<td>Stochastic Models in Industrial Engineering</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>MAE 302</td>
<td>Engineering Thermodynamics II</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>MAE 305</td>
<td>Mechanical Engineering Laboratory I</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>MAE 306</td>
<td>Mechanical Engineering Laboratory II</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>MAE 310</td>
<td>Heat Transfer Fundamentals</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>MAE 315</td>
<td>Dynamics of Machines</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>MAE 316</td>
<td>Strength of Mechanical Components</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>MAE 351</td>
<td>Aerodynamics II</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>MAE 352</td>
<td>Experimental Aerodynamics II</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>MAE 361</td>
<td>Dynamics & Controls</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>MAE 371</td>
<td>Aerospace Structures I</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>MAE 372</td>
<td>Aerospace Vehicle Structures Lab</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>MSE 301</td>
<td>Introduction to Thermodynamics of Materials</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>MSE 355</td>
<td>Electrical, Magnetic and Optical Properties of Materials</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>MSE 360</td>
<td>Kinetic Processes in Materials</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>NE 418</td>
<td>Nuclear Power Plant Instrumentation</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>NE 509</td>
<td>Nuclear Materials</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>NE 512</td>
<td>Nuclear Fuel Cycles</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>NE 521</td>
<td>Principles of Radiation Measurement</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>NE 528</td>
<td>Introduction to Plasma Physics and Fusion Energy</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>PY 528</td>
<td>Introduction to Plasma Physics and Fusion Energy</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Semester Sequence

This is a sample.

First Year

<table>
<thead>
<tr>
<th>Fall Semester</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH 101</td>
<td>3</td>
</tr>
<tr>
<td>CH 102</td>
<td>1</td>
</tr>
<tr>
<td>E 101</td>
<td>2</td>
</tr>
<tr>
<td>E 115</td>
<td>1</td>
</tr>
<tr>
<td>ENG 101</td>
<td>4</td>
</tr>
<tr>
<td>MA 141</td>
<td>4</td>
</tr>
<tr>
<td>GEP Health and Exercise Studies</td>
<td>1</td>
</tr>
</tbody>
</table>

Spring Semester

<table>
<thead>
<tr>
<th>Fall Semester</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSC 113</td>
<td>3</td>
</tr>
<tr>
<td>MA 241</td>
<td>4</td>
</tr>
<tr>
<td>PY 205</td>
<td>3</td>
</tr>
<tr>
<td>PY 206</td>
<td>1</td>
</tr>
<tr>
<td>Select one of the following Economics courses:</td>
<td>3</td>
</tr>
<tr>
<td>EC 205</td>
<td>3</td>
</tr>
<tr>
<td>EC 201</td>
<td>1</td>
</tr>
<tr>
<td>ARE 201</td>
<td>3</td>
</tr>
<tr>
<td>E 102</td>
<td>2</td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Fall Semester</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAE 206</td>
<td>3</td>
</tr>
<tr>
<td>MA 242</td>
<td>4</td>
</tr>
<tr>
<td>NE 201</td>
<td>2</td>
</tr>
<tr>
<td>PY 208</td>
<td>3</td>
</tr>
<tr>
<td>PY 209</td>
<td>1</td>
</tr>
</tbody>
</table>
Advanced Communication Elective (p. 2) 3

Spring Semester

MAE 208 Engineering Dynamics 3

MA 341 Applied Differential Equations I 3

NE 202 Radiation Sources, Interaction and Detection 4

GEP Requirement (http://catalog.ncsu.edu/undergraduate/gep-category-requirements/) 3

GEP Requirement (http://catalog.ncsu.edu/undergraduate/gep-category-requirements/) 3

Hours 16

Third Year

Fall Semester

MAE 201 Engineering Thermodynamics I 3

MA 401 Applied Differential Equations II 3

NE 301 Fundamentals of Nuclear Engineering 3

ISE 311 Engineering Economic Analysis 3

GEP Requirement (http://catalog.ncsu.edu/undergraduate/gep-category-requirements/) 3

Hours 15

Spring Semester

MAE 308 Fluid Mechanics 3

MSE 201 Structure and Properties of Engineering Materials 3

NE 400 Nuclear Reactor Energy Conversion 4

NE 401 Reactor Analysis and Design 3

NE 403 Nuclear Reactor Laboratory 2

GEP Health and Exercise Studies (http://catalog.ncsu.edu/undergraduate/gep-category-requirements/gep-health-exercise-studies/) 1

Hours 16

Fourth Year

Fall Semester

NE 402 Reactor Engineering 4

NE 404 Radiation Safety and Shielding 3

NE 406 Nuclear Engineering Senior Design Preparation 1

NE Elective (p. 3) 3

Technical Elective (p. 3) 3

Hours 14

Spring Semester

NE 405 Reactor Systems 3

NE 408 Nuclear Engineering Design Project 3

Engineering Technical Elective (p. 3) 3

GEP Requirement (http://catalog.ncsu.edu/undergraduate/gep-category-requirements/) 3

GEP Requirement (http://catalog.ncsu.edu/undergraduate/gep-category-requirements/) 3

Hours 15

Total Hours 123

1 A grade of C or higher is required.

2 A grade of C- or higher is required.

Career Opportunities

Nuclear power reactor operation continues with ninety eight reactors operating in the nation, increasing our reliance upon nuclear energy as a substitute for energy from fossil fuels. Development of advanced fission and fusion reactors offers the potential of vast new energy sources. Industrial and medical applications of radiation continue to increase in diverse industries. Demand for nuclear engineers is on the rise within the electric power industry and national laboratories, naval reactors, and other industries. According to the National Society of Professional Engineers, nuclear engineers are among the top five best compensated of the engineering disciplines.