Microbiology (BS): Microbial Biotechnology Concentration

To see more about what you will learn in this program, visit the Learning Outcomes website (https://apps.orp.ncsu.edu/pgas/)!

Microbiology is concerned with the growth and development, physiology, classification, ecology, genetics, and other aspects of the life process of an array of microscopic, generally single-celled, organisms and viruses. These organisms frequently serve as model systems for elucidation of fundamental processes that are common to all living cells. Most of the major discoveries that have produced spectacular advances in biology and genomic science during the past decade have resulted from studies of microbial systems. Future developments in biotechnology, production of food and fuel, and human and animal health will rely heavily on understanding microbial processes.

There are 4 avenues to earning a B.S. in Microbiology. Students can opt for a general curriculum (MBIO) or can choose to focus in a particular area by selecting one of three areas of concentration: Microbial Biotechnology (MBIO-MT) or Microbial Research (MBIO-MR) or Microbial Health Sciences (MBIO-HS). These concentrations mirror the three most common career paths of Microbiology majors: work in research laboratories and production facilities, further study in graduate school (at the Masters or Doctoral level), and further study in professional schools such as medical and dental schools.

Plan Requirements

Microbiology (BS): Microbial Biotechnology: 120 Total Units

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orientation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LSC 103</td>
<td>Exploring Opportunities in the Life Sciences</td>
<td>1</td>
</tr>
<tr>
<td>or MB 103</td>
<td>Introductory Topics in Microbiology</td>
<td></td>
</tr>
<tr>
<td>Communication</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EN 333</td>
<td>Communication for Science and Research</td>
<td>1</td>
</tr>
<tr>
<td>Mathematical Sciences</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MA 131</td>
<td>Calculus for Life and Management Sciences A</td>
<td>1</td>
</tr>
<tr>
<td>or MA 141</td>
<td>Calculus I</td>
<td>3</td>
</tr>
<tr>
<td>ST 311</td>
<td>Introduction to Statistics</td>
<td>1</td>
</tr>
<tr>
<td>or ST 371</td>
<td>Introduction to Probability and Distribution Theory</td>
<td>3</td>
</tr>
<tr>
<td>Natural and Physical Sciences</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH 101</td>
<td>Chemistry - A Molecular Science</td>
<td>1</td>
</tr>
<tr>
<td>CH 102</td>
<td>General Chemistry Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>CH 201</td>
<td>Chemistry - A Quantitative Science</td>
<td>1</td>
</tr>
<tr>
<td>CH 202</td>
<td>Quantitative Chemistry Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>CH 221</td>
<td>Organic Chemistry I</td>
<td>1</td>
</tr>
<tr>
<td>CH 222</td>
<td>Organic Chemistry I Lab</td>
<td>1</td>
</tr>
<tr>
<td>CH 223</td>
<td>Organic Chemistry II</td>
<td>1</td>
</tr>
<tr>
<td>CH 224</td>
<td>Organic Chemistry II Lab</td>
<td>1</td>
</tr>
<tr>
<td>BIO 181</td>
<td>Introductory Biology: Ecology, Evolution, and Biodiversity</td>
<td>4</td>
</tr>
<tr>
<td>Microbial Biotech Electives (p. 2)</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Laboratory Elective (p. 2)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>GEP Courses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENG 101</td>
<td>Academic Writing and Research</td>
<td>1</td>
</tr>
<tr>
<td>GEP Humanities</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>GEP Social Sciences</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>GEP Health and Exercise Studies</td>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>

Major Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>LSC 101</td>
<td>Critical and Creative Thinking in the Life Sciences</td>
<td>1</td>
</tr>
<tr>
<td>MB 351</td>
<td>General Microbiology</td>
<td>1</td>
</tr>
<tr>
<td>MB 354</td>
<td>Inquiry-Guided Microbiology Lab</td>
<td>1</td>
</tr>
<tr>
<td>MB 411</td>
<td>Medical Microbiology</td>
<td>1</td>
</tr>
<tr>
<td>MB 412</td>
<td>Medical Microbiology Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>MB 414</td>
<td>Microbial Metabolic Regulation</td>
<td>1</td>
</tr>
<tr>
<td>MB 451</td>
<td>Microbial Diversity</td>
<td>1</td>
</tr>
<tr>
<td>MB 452</td>
<td>Microbial Diversity Lab</td>
<td>1</td>
</tr>
<tr>
<td>MB 455</td>
<td>Microbial Biotechnology</td>
<td>1</td>
</tr>
<tr>
<td>MB 480</td>
<td>Current Issues in Microbiology</td>
<td>1</td>
</tr>
<tr>
<td>GN 311</td>
<td>Principles of Genetics</td>
<td>1</td>
</tr>
<tr>
<td>BCH 351</td>
<td>General Biochemistry</td>
<td>1</td>
</tr>
<tr>
<td>or BCH 451</td>
<td>Principles of Biochemistry</td>
<td>1</td>
</tr>
<tr>
<td>BIO 240</td>
<td>Principles of Human Anatomy & Physiology (A): Nervous, Skeletal, Muscular, & Digestive Systems</td>
<td>1</td>
</tr>
<tr>
<td>BIO 245</td>
<td>Principles of Human Anatomy & Physiology (B): Endocrine, Cardiovascular, Respiratory & Renal Systems</td>
<td>1</td>
</tr>
<tr>
<td>BIO 414</td>
<td>Cell Biology</td>
<td>1</td>
</tr>
<tr>
<td>PB 421</td>
<td>Plant Physiology</td>
<td>1</td>
</tr>
</tbody>
</table>

Microbiota

Microbiology (BS): Microbial Biotechnology Concentration

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIO 183</td>
<td>Introductory Biology: Cellular and Molecular Biology</td>
<td>4</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>PY 201</td>
<td>University Physics I</td>
<td>1</td>
</tr>
<tr>
<td>PY 205</td>
<td>Physics for Engineers and Scientists I</td>
<td>1</td>
</tr>
<tr>
<td>& PY 206</td>
<td>and Physics for Engineers and Scientists I Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>PY 211</td>
<td>College Physics I</td>
<td>1</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>PY 202</td>
<td>University Physics II</td>
<td>1</td>
</tr>
<tr>
<td>PY 208</td>
<td>Physics for Engineers and Scientists II</td>
<td>1</td>
</tr>
<tr>
<td>& PY 209</td>
<td>and Physics for Engineers and Scientists II Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>PY 212</td>
<td>College Physics II</td>
<td>1</td>
</tr>
</tbody>
</table>

Select one of the following:		1
BCH 453	Biochemistry of Gene Expression	1
BCH 553	Biochemistry of Gene Expression	1
GN 421	Molecular Genetics	1
GN 521	Molecular Genetics	1
BIO 240	Principles of Human Anatomy & Physiology (A): Nervous, Skeletal, Muscular, & Digestive Systems	1
BIO 245	Principles of Human Anatomy & Physiology (B): Endocrine, Cardiovascular, Respiratory & Renal Systems	1
BIO 414	Cell Biology	1
PB 421	Plant Physiology	1

<table>
<thead>
<tr>
<th>Microbiota (BS): Microbial Biotechnology Concentration</th>
<th>Code</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIO 183</td>
<td>Introductory Biology: Cellular and Molecular Biology</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Select one of the following:</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>PY 201</td>
<td>University Physics I</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>PY 205</td>
<td>Physics for Engineers and Scientists I</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>& PY 206</td>
<td>and Physics for Engineers and Scientists I Laboratory</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>PY 211</td>
<td>College Physics I</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Select one of the following:</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>PY 202</td>
<td>University Physics II</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>PY 208</td>
<td>Physics for Engineers and Scientists II</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>& PY 209</td>
<td>and Physics for Engineers and Scientists II Laboratory</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>PY 212</td>
<td>College Physics II</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Select one of the following:		1
BCH 453	Biochemistry of Gene Expression	1
BCH 553	Biochemistry of Gene Expression	1
GN 421	Molecular Genetics	1
GN 521	Molecular Genetics	1
BIO 240	Principles of Human Anatomy & Physiology (A): Nervous, Skeletal, Muscular, & Digestive Systems	1
BIO 245	Principles of Human Anatomy & Physiology (B): Endocrine, Cardiovascular, Respiratory & Renal Systems	1
BIO 414	Cell Biology	1
PB 421	Plant Physiology	1

<table>
<thead>
<tr>
<th>Microbiota (BS): Microbial Biotechnology Concentration</th>
<th>Code</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIO 183</td>
<td>Introductory Biology: Cellular and Molecular Biology</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Select one of the following:</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>PY 201</td>
<td>University Physics I</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>PY 205</td>
<td>Physics for Engineers and Scientists I</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>& PY 206</td>
<td>and Physics for Engineers and Scientists I Laboratory</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>PY 211</td>
<td>College Physics I</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Select one of the following:</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>PY 202</td>
<td>University Physics II</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>PY 208</td>
<td>Physics for Engineers and Scientists II</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>& PY 209</td>
<td>and Physics for Engineers and Scientists II Laboratory</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>PY 212</td>
<td>College Physics II</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Select one of the following:		1
BCH 453	Biochemistry of Gene Expression	1
BCH 553	Biochemistry of Gene Expression	1
GN 421	Molecular Genetics	1
GN 521	Molecular Genetics	1
BIO 240	Principles of Human Anatomy & Physiology (A): Nervous, Skeletal, Muscular, & Digestive Systems	1
BIO 245	Principles of Human Anatomy & Physiology (B): Endocrine, Cardiovascular, Respiratory & Renal Systems	1
BIO 414	Cell Biology	1
PB 421	Plant Physiology	1
Microbial Biotech Electives

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAE 425</td>
<td>Industrial Microbiology and Bioprocessing</td>
<td>3</td>
</tr>
<tr>
<td>BAE 525</td>
<td>Industrial Microbiology and Bioprocessing</td>
<td>3</td>
</tr>
<tr>
<td>BBS 426</td>
<td>Upstream Biomanufacturing Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>BBS 526</td>
<td>Upstream Biomanufacturing Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>BEC 426</td>
<td>Upstream Biomanufacturing Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>BEC 463</td>
<td>Fermentation of Recombinant Microorganisms</td>
<td>2</td>
</tr>
<tr>
<td>BEC 480</td>
<td>cGMP Fermentation Operations</td>
<td>2</td>
</tr>
<tr>
<td>BEC 488</td>
<td>Animal Cell Culture Engineering</td>
<td>2</td>
</tr>
<tr>
<td>BEC 526</td>
<td>Upstream Biomanufacturing Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>BEC 563</td>
<td>Fermentation of Recombinant Microorganisms</td>
<td>2</td>
</tr>
<tr>
<td>BEC 580</td>
<td>cGMP Fermentation Operations</td>
<td>2</td>
</tr>
<tr>
<td>BIT 210</td>
<td>Phage Hunters</td>
<td>3</td>
</tr>
<tr>
<td>BIT 211</td>
<td>Phage Genomics</td>
<td>2</td>
</tr>
<tr>
<td>BIT 410</td>
<td>Manipulation of Recombinant DNA</td>
<td>4</td>
</tr>
<tr>
<td>BIT 463</td>
<td>Fermentation of Recombinant Microorganisms</td>
<td>2</td>
</tr>
<tr>
<td>BIT 466</td>
<td>Animal Cell Culture Techniques</td>
<td>2</td>
</tr>
<tr>
<td>BIT 563</td>
<td>Fermentation of Recombinant Microorganisms</td>
<td>2</td>
</tr>
<tr>
<td>CHE 463</td>
<td>Fermentation of Recombinant Microorganisms</td>
<td>2</td>
</tr>
<tr>
<td>CHE 488</td>
<td>Animal Cell Culture Engineering</td>
<td>2</td>
</tr>
<tr>
<td>CHE 563</td>
<td>Fermentation of Recombinant Microorganisms</td>
<td>2</td>
</tr>
<tr>
<td>FS 426</td>
<td>Upstream Biomanufacturing Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>FS 526</td>
<td>Upstream Biomanufacturing Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>MB 210</td>
<td>Phage Hunters</td>
<td>3</td>
</tr>
<tr>
<td>MB 211</td>
<td>Phage Genomics</td>
<td>2</td>
</tr>
<tr>
<td>MB 420</td>
<td>Fundamentals of Microbial Cell Biotransformations</td>
<td>2</td>
</tr>
<tr>
<td>MB 520</td>
<td>Fundamentals of Microbial Cell Biotransformations</td>
<td>2</td>
</tr>
<tr>
<td>PO 466</td>
<td>Animal Cell Culture Techniques</td>
<td>2</td>
</tr>
<tr>
<td>PO 566</td>
<td>Animal Cell Culture Techniques</td>
<td>2</td>
</tr>
</tbody>
</table>

GEP Additional Breadth (http://catalog.ncsu.edu/undergraduate/gep-category-requirements/) (Humanities/Social Sciences/Visual and Performing Arts)

GEP Interdisciplinary Perspectives (http://catalog.ncsu.edu/undergraduate/gep-category-requirements/gep-interdisciplinary-perspectives/)

GEP U.S. Diversity (http://catalog.ncsu.edu/undergraduate/gep-category-requirements/gep-us-diversity/) (verify requirement)

GEP Global Knowledge (http://catalog.ncsu.edu/undergraduate/gep-category-requirements/gep-global-knowledge/) (verify requirement)

Foreign Language Proficiency (http://catalog.ncsu.edu/undergraduate/gep-category-requirements/foreign-language-proficiency/) (verify requirement)

Free Electives

Free Electives (12 Hr S/U Lmt) 2

Total Hours 120

1 A grade of C- or higher is required.

2 Students should consult their academic advisors to determine which courses fill this requirement.

Laboratory Elective

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BBS 426</td>
<td>Upstream Biomanufacturing Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>BBS 526</td>
<td>Upstream Biomanufacturing Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>BCH 452</td>
<td>Introductory Biochemistry Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>BEC 426</td>
<td>Upstream Biomanufacturing Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>BEC 436</td>
<td>Introduction to Downstream Process Development</td>
<td>2</td>
</tr>
<tr>
<td>BEC 440</td>
<td>Expression Systems in Biomanufacturing I</td>
<td>3</td>
</tr>
<tr>
<td>BEC 441</td>
<td>Expression Systems in Biomanufacturing II</td>
<td>3</td>
</tr>
<tr>
<td>BEC 462</td>
<td>Fundamentals of Bio-Nanotechnology</td>
<td>3</td>
</tr>
<tr>
<td>BEC 463</td>
<td>Fermentation of Recombinant Microorganisms</td>
<td>2</td>
</tr>
<tr>
<td>BEC 475</td>
<td>Global Regulatory Affairs for Medical Products</td>
<td>3</td>
</tr>
<tr>
<td>BEC 480</td>
<td>cGMP Fermentation Operations</td>
<td>2</td>
</tr>
<tr>
<td>BEC 483</td>
<td>Tissue Engineering Technologies</td>
<td>2</td>
</tr>
<tr>
<td>BEC 485</td>
<td>cGMP Downstream Operations</td>
<td>2</td>
</tr>
<tr>
<td>BEC 488</td>
<td>Animal Cell Culture Engineering</td>
<td>2</td>
</tr>
<tr>
<td>BEC 495</td>
<td>Special Topics in Biomanufacturing</td>
<td>1-4</td>
</tr>
<tr>
<td>BEC 497</td>
<td>Biomanufacturing Research Projects</td>
<td>1-3</td>
</tr>
<tr>
<td>BEC 526</td>
<td>Upstream Biomanufacturing Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>BEC 536</td>
<td>Introduction to Downstream Process Development</td>
<td>2</td>
</tr>
<tr>
<td>BEC 540</td>
<td>Expression Systems in Biomanufacturing I</td>
<td>3</td>
</tr>
<tr>
<td>BEC 541</td>
<td>Expression Systems in Biomanufacturing II</td>
<td>3</td>
</tr>
<tr>
<td>BEC 562</td>
<td>Fundamentals of Bio-Nanotechnology</td>
<td>3</td>
</tr>
<tr>
<td>BEC 563</td>
<td>Fermentation of Recombinant Microorganisms</td>
<td>2</td>
</tr>
<tr>
<td>BEC 575</td>
<td>Global Regulatory Affairs for Medical Products</td>
<td>3</td>
</tr>
<tr>
<td>BEC 580</td>
<td>cGMP Fermentation Operations</td>
<td>2</td>
</tr>
<tr>
<td>BEC 583</td>
<td>Tissue Engineering Technologies</td>
<td>2</td>
</tr>
<tr>
<td>BEC 585</td>
<td>cGMP Downstream Operations</td>
<td>2</td>
</tr>
<tr>
<td>BIT 402</td>
<td>Biotechnology Networking and Professional</td>
<td>1</td>
</tr>
<tr>
<td>BIT 410</td>
<td>Manipulation of Recombinant DNA</td>
<td>4</td>
</tr>
<tr>
<td>BIT 462</td>
<td>Gene Expression Analysis: Microarrays</td>
<td>2</td>
</tr>
<tr>
<td>BIT 463</td>
<td>Fermentation of Recombinant Microorganisms</td>
<td>2</td>
</tr>
<tr>
<td>BIT 464</td>
<td>Protein Purification</td>
<td>2</td>
</tr>
<tr>
<td>BIT 465</td>
<td>Real-time PCR Techniques</td>
<td>2</td>
</tr>
<tr>
<td>BIT 466</td>
<td>Animal Cell Culture Techniques</td>
<td>2</td>
</tr>
<tr>
<td>BIT 467</td>
<td>PCR and DNA Fingerprinting</td>
<td>2</td>
</tr>
<tr>
<td>BIT 468</td>
<td>Genome Mapping</td>
<td>2</td>
</tr>
<tr>
<td>BIT 471</td>
<td>RNA Interference and Model Organisms</td>
<td>2</td>
</tr>
<tr>
<td>BIT 473</td>
<td>Protein Interactions</td>
<td>2</td>
</tr>
<tr>
<td>BIT 474</td>
<td>Plant Genetic Engineering</td>
<td>2</td>
</tr>
<tr>
<td>BIT 476</td>
<td>Applied Bioinformatics</td>
<td>2</td>
</tr>
<tr>
<td>BIT 477</td>
<td>Metagenomics</td>
<td>2</td>
</tr>
<tr>
<td>BIT 478</td>
<td>Mapping the Brain</td>
<td>2</td>
</tr>
<tr>
<td>BIT 479</td>
<td>High-Throughput Discovery</td>
<td>2</td>
</tr>
<tr>
<td>BIT 480</td>
<td>Yeast Metabolic Engineering</td>
<td>2</td>
</tr>
<tr>
<td>BIT 481</td>
<td>Plant Tissue Culture and Transformation</td>
<td>2</td>
</tr>
<tr>
<td>BIT 492</td>
<td>External Learning Experience</td>
<td>1-6</td>
</tr>
<tr>
<td>BIT 493</td>
<td>Special Problems in Biotechnology</td>
<td>1-6</td>
</tr>
<tr>
<td>BIT 495</td>
<td>Special Topics in Biotechnology</td>
<td>1-3</td>
</tr>
<tr>
<td>BIT 502</td>
<td>Biotechnology Networking and Professional</td>
<td>1</td>
</tr>
</tbody>
</table>

Development

Special Topics in Biotechnology

Special Problems in Biotechnology

plant Tissue Culture and Transformation

Yeast Metabolic Engineering

High-Throughput Discovery

Applied Bioinformatics

Metagenomics

Mapping the Brain

Yeast Metabolic Engineering

Plant Tissue Culture and Transformation

External Learning Experience

Special Problems in Biotechnology

Biotechnology Networking and Professional Development
Semester Sequence

This is a sample.

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Year</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fall Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIO 181</td>
<td>Introductory Biology: Ecology, Evolution, and Biodiversity ¹</td>
<td>4</td>
</tr>
<tr>
<td>CH 101</td>
<td>Chemistry - A Molecular Science ¹</td>
<td>3</td>
</tr>
<tr>
<td>CH 102</td>
<td>General Chemistry Laboratory ¹</td>
<td>1</td>
</tr>
<tr>
<td>LSC 101</td>
<td>Critical and Creative Thinking in the Life Sciences ¹</td>
<td>2</td>
</tr>
<tr>
<td>MA 131</td>
<td>Calculus for Life and Management Sciences A ¹</td>
<td>3</td>
</tr>
<tr>
<td>MB 103</td>
<td>Introductory Topics in Microbiology</td>
<td>1</td>
</tr>
<tr>
<td>GEP Health and Exercise Studies (http://catalog.ncsu.edu/undergraduate/gep-category-requirements/gep-health-exercise-studies/)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Spring Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIO 183</td>
<td>Introductory Biology: Cellular and Molecular Biology ³</td>
<td>4</td>
</tr>
<tr>
<td>CH 221</td>
<td>Organic Chemistry I ¹</td>
<td>3</td>
</tr>
<tr>
<td>CH 222</td>
<td>Organic Chemistry I Lab ¹</td>
<td>1</td>
</tr>
<tr>
<td>ENG 101</td>
<td>Academic Writing and Research</td>
<td>4</td>
</tr>
<tr>
<td>GEP Social Sciences (http://catalog.ncsu.edu/undergraduate/gep-category-requirements/gep-social-sciences/)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Second Year</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fall Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH 223</td>
<td>Organic Chemistry II ¹</td>
<td>3</td>
</tr>
<tr>
<td>CH 224</td>
<td>Organic Chemistry II Lab ¹</td>
<td>1</td>
</tr>
<tr>
<td>PY 211</td>
<td>College Physics I ¹</td>
<td>4</td>
</tr>
<tr>
<td>MB 351</td>
<td>General Microbiology ¹</td>
<td>3</td>
</tr>
<tr>
<td>GEP Social Sciences (http://catalog.ncsu.edu/undergraduate/gep-category-requirements/gep-social-sciences/)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>MB 354</td>
<td>Inquiry-Guided Microbiology Lab ¹</td>
<td>1</td>
</tr>
<tr>
<td>Spring Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH 201</td>
<td>Chemistry - A Quantitative Science ¹</td>
<td>3</td>
</tr>
<tr>
<td>CH 202</td>
<td>Quantitative Chemistry Laboratory ¹</td>
<td>1</td>
</tr>
<tr>
<td>PY 212</td>
<td>College Physics II ¹</td>
<td>4</td>
</tr>
<tr>
<td>GEP Humanities (http://catalog.ncsu.edu/undergraduate/gep-category-requirements/gep-humanities/)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>MB 411</td>
<td>Medical Microbiology ¹</td>
<td>3</td>
</tr>
<tr>
<td>MB 412</td>
<td>Medical Microbiology Laboratory ¹</td>
<td>1</td>
</tr>
<tr>
<td>Third Year</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fall Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENG 333</td>
<td>Communication for Science and Research</td>
<td>3</td>
</tr>
<tr>
<td>GN 311</td>
<td>Principles of Genetics ¹</td>
<td>4</td>
</tr>
<tr>
<td>ST 311</td>
<td>Introduction to Statistics ¹</td>
<td>3</td>
</tr>
<tr>
<td>GEP Health and Exercise</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Microbial Biotechnology Elective ¹</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Fourth Year</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fall Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MB 414</td>
<td>Microbial Metabolic Regulation ¹</td>
<td>3</td>
</tr>
<tr>
<td>MB 480</td>
<td>Current Issues in Microbiology ¹</td>
<td>1</td>
</tr>
<tr>
<td>Microbial Biotechnology Elective ¹</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>MB 451</td>
<td>Microbial Diversity ¹</td>
<td>3</td>
</tr>
<tr>
<td>MB 452</td>
<td>Microbial Diversity Lab ¹</td>
<td>2</td>
</tr>
<tr>
<td>GEP Humanities (http://catalog.ncsu.edu/undergraduate/gep-category-requirements/gep-humanities/)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Spring Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Free Elective</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>
Microbiology (BS): Microbial Biotechnology Concentration

Gene Expression Elective 1 3
GEP Interdisciplinary Perspectives (http://catalog.ncsu.edu/undergraduate/gep-category-requirements/gep-interdisciplinary-perspectives/) 3
Microbial Biotechnology Elective 1 3
Microbial Biotechnology Elective 1 3

Total Hours 15
Total Hours 120

1 A grade of C- or higher is required.

Career Opportunities

Many students majoring in the Department of Biological Sciences take advantage of scholarship and honors programs available at NC State, including the University Honors Program and the University Scholars Program. In addition, we offer a discipline-based Undergraduate Honors Program in Biological Sciences (DBS Honors Program). The DBS Honors Program requires students to design a challenging program of advanced study, including eight credits of honors coursework in biology and at least two semesters of research or teaching scholarship. Participants write an honors thesis and are required to present their scholarly work at a local, regional, or national meeting. Invitations to join the DBS Honors Program are sent in the first three weeks of the Fall and Spring semesters. Students in any major in the Department of Biological Sciences who have earned an overall GPA of 3.60 after completing 30-65 credit hours at NC State will receive an invitation to join the DBS Honors Program; transfer students in any of our majors who have earned an overall GPA of 3.60 in 15 credit hours at NC State also will receive an invitation.

Students who graduate from the Department of Biological Sciences are well prepared for employment in various government agencies and private industries. Graduates may continue their education with studies leading to advanced degrees in many areas of the biological sciences, including cell biology, ecology, microbiology, genetics, zoology, neurobiology, and biomedical disciplines. Many choose to seek advanced degrees in medicine, dentistry, optometry, veterinary medicine, public health, and other health-related fields. Students who plan to seek certification for pre-college teaching may want to pursue a second major in the Department of Science, Technology, Engineering & Mathematics Education.