Nanoengineering (MR): Biomedical Sciences in Nanoengineering Concentration

Degree Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Hours</th>
<th>Counts towards</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSE 500</td>
<td>Modern Concepts in Materials Science</td>
<td>3</td>
<td>Core Courses</td>
</tr>
<tr>
<td>MSE 565</td>
<td>Introduction to Nanomaterials</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>MSE 791</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ECE/CHE 568</td>
<td>Conventional and Emerging Nanomanufacturing Techniques and Their Applications in Nanosystems</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ISE 718</td>
<td>Micro/Nano-Scale Fabrication and Manufacturing</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>MAE 536</td>
<td>Micro/Nano Electromechanical Systems</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Select four of the following courses:

- MSE 500: Modern Concepts in Materials Science
- MSE 565: Introduction to Nanomaterials
- MSE 791: |
- ECE/CHE 568: Conventional and Emerging Nanomanufacturing Techniques and Their Applications in Nanosystems
- ISE 718: Micro/Nano-Scale Fabrication and Manufacturing
- MAE 536: Micro/Nano Electromechanical Systems

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Hours</th>
<th>Counts towards</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECE 542</td>
<td>Neural Networks</td>
<td>3</td>
<td>Concentration Requirement Courses</td>
</tr>
<tr>
<td>ECE/BME 518</td>
<td>Wearable Biosensors and Microsystems</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Technical Electives

- CHE 596: Special Topics in Chemical Engineering (Colloid Science and Nanoscale Engineering)
- CHE 596: Special Topics in Chemical Engineering (Drug Delivery)
- ECE 596: Special Topics in Chemical Engineering (Drug Delivery)
- ECE/BME 518: Wearable Biosensors and Microsystems

Total Hours: 30

* "Technical Electives" may be ones in the MNAE program not used to satisfy other degree requirements or other technical courses approved by the Director of Graduate Program, Nanoengineering.

Full Professors

- Charles M. Balik
- Albena Ivanisevic
- Thomas H. LaBean
- Jagdish Narayan
- Joseph B. Tracy
- Daryoosh Vashaee
- Yaroslava G. Yingling
- Yong Zhu

Associate Professors

- Rajeev Kumar Gupta

Assistant Professors

- Kaveh Ahadi
- Wenpei Gao
- Srikanth Patala

Practice/Research/Teaching Professors

- Claude Lewis Reynolds Jr.
Emeritus Faculty
Elizabeth Carol Dickey

Career Opportunities
Nanotechnological advancements have impacted every technological sector and ultimately may change aspects of our daily lives. The development of these new technologies requires innovative nanoengineers who are invested in the fields of electronics, materials, chemical technology, biotechnology and biomedical engineering. Graduates of the Master of Nanoengineering program are equipped with a solid foundation in nanoscience and nanotechnology necessary for the development of new products and procedures.

Potential careers associated with nanoengineering are as follows.

- Research and development engineer/scientist
- Biomedical engineer
- Materials engineer/scientist
- Bioinformatics
- Chemist
- Process engineer
- Materials analyst
- Professor
- Medical doctor
- PhD student