Nanoengineering (MR): Materials Science in Nanoengineering Concentration

Degree Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Hours</th>
<th>Counts towards</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSE 500</td>
<td>Modern Concepts in Materials Science</td>
<td></td>
<td>Core Courses</td>
</tr>
<tr>
<td>MSE 565</td>
<td>Introduction to Nanomaterials</td>
<td></td>
<td>Core Courses</td>
</tr>
<tr>
<td>MSE 791</td>
<td>Nonferrous Alloys</td>
<td></td>
<td>Core Courses</td>
</tr>
<tr>
<td>ECE/CHE 568</td>
<td>Conventional and Emerging Nanomanufacturing Techniques and Their Applications in Nanosystems</td>
<td></td>
<td>Core Courses</td>
</tr>
<tr>
<td>ISE 718</td>
<td>Micro/Nano Fabrication and Manufacturing</td>
<td></td>
<td>Core Courses</td>
</tr>
<tr>
<td>MAE 536</td>
<td>Micro/Nano Electromechanical Systems</td>
<td></td>
<td>Core Courses</td>
</tr>
</tbody>
</table>

Select four of the following courses:
MSE 500 Modern Concepts in Materials Science 3
MSE 565 Introduction to Nanomaterials 3
MSE 791 Nonferrous Alloys 3
ECE/CHE 568 Conventional and Emerging Nanomanufacturing Techniques and Their Applications in Nanosystems 3
ISE 718 Micro/Nano Fabrication and Manufacturing 3
MAE 536 Micro/Nano Electromechanical Systems 3

Code | Title | Hours | Counts towards |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>MSE 702</td>
<td>Defects In Solids</td>
<td></td>
<td>Concentration Requirement Courses</td>
</tr>
<tr>
<td>MSE 706</td>
<td>Phase Transformations and Kinetics</td>
<td></td>
<td>Concentration Requirement Courses</td>
</tr>
<tr>
<td>MSE 708</td>
<td>Thermodynamics Of Materials</td>
<td></td>
<td>Concentration Requirement Courses</td>
</tr>
<tr>
<td>MSE 710</td>
<td>Elements Of Crystalllography and Diffraction</td>
<td></td>
<td>Concentration Requirement Courses</td>
</tr>
<tr>
<td>MSE 715</td>
<td>Fundamentals Of Transmission Electron Microscopy</td>
<td></td>
<td>Concentration Requirement Courses</td>
</tr>
<tr>
<td>MSE 721</td>
<td>Nanoscale Simulations and Modeling</td>
<td></td>
<td>Concentration Requirement Courses</td>
</tr>
</tbody>
</table>

Select a minimum of four of the following courses:
MSE 702 Defects In Solids 3
MSE 706 Phase Transformations and Kinetics 3
MSE 708 Thermodynamics Of Materials 3
MSE 710 Elements Of Crystalllography and Diffraction 3
MSE 715 Fundamentals Of Transmission Electron Microscopy 3
MSE 721 Nanoscale Simulations and Modeling 3

Technical Electives 6

* "Technical Electives" are approved in conjunction with the academic committee

Total Hours 30

* "Technical Electives" may be ones in the MNAE program not used to satisfy other degree requirements or other technical courses approved by the Director of Graduate Program, Nanoengineering.

Full Professors

Charles M. Balik
Albena Ivanisevic
Thomas H. LaBean
Jagdish Narayan
Joseph B. Tracy
Daryoosh Vashaee
Yaroslava G. Yingling
Yong Zhu

Associate Professors

Rajeev Kumar Gupta

Assistant Professors

Kaveh Ahadi
Wenpei Gao
Srikanth Patala

Practice/Research/Teaching Professors

Claude Lewis Reynolds Jr.

Emeritus Faculty

Elizabeth Carol Dickey

Career Opportunities

Nanotechnological advancements have impacted every technological sector and ultimately may change aspects of our daily lives. The development of these new technologies requires innovative nanoengineers who are invested in the fields of electronics, materials, chemical technology, biotechnology and biomedical engineering. Graduates of the Master of Nanoengineering program are equipped with a solid foundation in nanoscience and nanotechnology necessary for the development of new products and procedures.
Potential careers associated with nanoengineering are as follows.

- Research and development engineer/scientist
- Biomedical engineer
- Materials engineer/scientist
- Bioinformatics
- Chemist
- Process engineer
- Materials analyst
- Professor
- Medical doctor
- PhD student