Environmental Technology and Management (BS)

Environmental Technology and Management offers a comprehensive teaching and research program, preparing students for careers within the arenas of environmental regulation, environmental site assessment, and environmental health and safety. This curriculum prepares graduates to collect data, analyze and interpret those data, and determine appropriate solutions for sound environmental management. The curriculum focuses on the sciences behind the biological and chemical mechanisms of environmental processes. Students learn how to deal with a range of topics from everyday environmental management activities to natural and man-made disasters such as chemical spills, fires, hurricanes, oil spills, and more. Many Environmental Technology courses emphasize hands-on training with state-of-the-art monitoring equipment. An internship to obtain actual working-world experience is required.

Contact

For information on entrance requirements, contact the program director:

Dr. Angela Allen
Department of Forestry and Environmental Resources
Room 2231 Jordan Hall Addition
Campus Box 8008
Raleigh, NC 27695-8008
919.515.7581
amallen2@ncsu.edu

Plan Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Hours</th>
<th>Counts towards</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENV 100</td>
<td>Student Success in Environmental First Year</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>ENV 101</td>
<td>Exploring the Environment</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Mathematical Sciences

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Hours</th>
<th>Counts towards</th>
</tr>
</thead>
<tbody>
<tr>
<td>MA 131</td>
<td>Calculus for Life and Management Sciences A</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>or MA 141</td>
<td>Calculus I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 311</td>
<td>Introduction to Statistics</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Natural Sciences

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Hours</th>
<th>Counts towards</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH 101 & CH 102</td>
<td>Chemistry - A Molecular Science and General Chemistry Laboratory</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>BIO 181</td>
<td>Introductory Biology: Ecology, Evolution, and Biodiversity</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

Select one of the following:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Hours</th>
<th>Counts towards</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH 220</td>
<td>Introductory Organic Chemistry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH 221 & CH 222</td>
<td>Organic Chemistry I and Organic Chemistry I Lab</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

Select one of the following:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Hours</th>
<th>Counts towards</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH 223 & CH 224</td>
<td>Organic Chemistry II and Organic Chemistry II Lab</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>TOX 415</td>
<td>Ecotoxicology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SSC 200 & SSC 201</td>
<td>Soil Science and Soil Science Laboratory</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>PY 131</td>
<td>Conceptual Physics</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>or PY 211</td>
<td>College Physics I</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ecology Elective (p. 2) | 4

Required Courses

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Hours</th>
<th>Counts towards</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET 105</td>
<td>Introduction to Environmental Regulations</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ET 021</td>
<td>Environmental Technology Laboratory I</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ET 022</td>
<td>Environmental Technology Laboratory II</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ET 203</td>
<td>Pollution Prevention</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ET 301</td>
<td>Environmental Technology Laboratory III</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ET 302</td>
<td>Environmental Technology Laboratory IV</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ET 303</td>
<td>Laboratory Safety Systems and Management</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ET 401</td>
<td>Environmental Technology Laboratory V</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>FOR 353</td>
<td>GIS and Remote Sensing for Environmental Analysis and Assessment Introduction to GIS</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>or GIS 280</td>
<td>Environmental Monitoring and Analysis</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

K. Philips
<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Hours</th>
<th>Counts towards</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>GEP Interdisciplinary Perspectives</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GEP Global Knowledge</td>
<td></td>
<td>(Verify Requirement)</td>
</tr>
<tr>
<td></td>
<td>World Language Proficiency</td>
<td></td>
<td>(Verify Requirement)</td>
</tr>
<tr>
<td></td>
<td>Free Electives</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total Hours</td>
<td>120</td>
<td></td>
</tr>
</tbody>
</table>

1 A grade of C- or better required.
2 Students should consult their academic advisors to determine which courses fill this requirement.

Ecology Electives

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Hours</th>
<th>Counts towards</th>
</tr>
</thead>
<tbody>
<tr>
<td>AEC 360</td>
<td>Ecology</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>FOR 260</td>
<td>Forest Ecology</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>PB 360</td>
<td>Ecology</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

Environmental Technology Laboratory Electives

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Hours</th>
<th>Counts towards</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET 201</td>
<td>Environmental Technology Laboratory I</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>ET 202</td>
<td>Environmental Technology Laboratory II</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>ET 203</td>
<td>Pollution Prevention</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>ET 301</td>
<td>Environmental Technology Laboratory III</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>ET 302</td>
<td>Environmental Technology Laboratory IV</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>ET 303</td>
<td>Laboratory Safety Systems and Management</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>ET 401</td>
<td>Environmental Technology Laboratory V</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Capstone Electives</td>
<td>Code</td>
<td>Title</td>
<td>Hours</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>------</td>
<td>--</td>
<td>-------</td>
</tr>
<tr>
<td></td>
<td>ES 400</td>
<td>Analysis of Environmental Issues</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ET 460</td>
<td>Practice of Environmental Technology</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>NR 406</td>
<td>Conservation of Biological Diversity</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Policy Electives</th>
<th>Code</th>
<th>Title</th>
<th>Hours</th>
<th>Counts towards</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ARE 309</td>
<td>Environmental Law & Economic Policy</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FOR 472</td>
<td>Forest Soils</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NR 460</td>
<td>Renewable Natural Resource Management and Policy</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NR 560</td>
<td>Renewable Natural Resource Management and Policy</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PS 320</td>
<td>U.S. Environmental Law and Politics</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PS 336</td>
<td>Global Environmental Politics</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Economics Electives</th>
<th>Code</th>
<th>Title</th>
<th>Hours</th>
<th>Counts towards</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ARE 201</td>
<td>Introduction to Agricultural & Resource Economics</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ARE 201A</td>
<td>Introduction to Agricultural & Resource Economics</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EC 201</td>
<td>Principles of Microeconomics</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EC 205</td>
<td>Fundamentals of Economics</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Advised Electives</th>
<th>Code</th>
<th>Title</th>
<th>Hours</th>
<th>Counts towards</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AEC 419</td>
<td>Freshwater Ecology</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AEC 441</td>
<td>Biology of Fishes</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AEC 442</td>
<td>Biology of Fishes Laboratory</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AEC 519</td>
<td>Freshwater Ecology</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BUS 350</td>
<td>Economics and Business Statistics</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>COM 436</td>
<td>Environmental Communication</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ES 113</td>
<td>Earth from Space</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ES 150</td>
<td>Water and the Environment</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ES 200</td>
<td>Climate Change and Sustainability</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ES 300</td>
<td>Energy and Environment</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ES 400</td>
<td>Analysis of Environmental Issues</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ET 120</td>
<td>Introduction to Renewable Energy Technologies and Assessments</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ET 220</td>
<td>Solar Photovoltaics Assessment</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ET 255</td>
<td>Hydro, Wind, and Bioenergy Assessment</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ET 262</td>
<td>Renewable Energy Adoption: Barriers and Incentives</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FOR 150</td>
<td>Critical Thinking and Data Analysis</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FOR 248</td>
<td>Forest History, Technology and Society</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FOR 260</td>
<td>Forest Ecology</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FOR 304</td>
<td>Theory of Silviculture</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FOR 330</td>
<td>North Carolina Forests</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FOR 339</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>Credits</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>---------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FOR 353</td>
<td>GIS and Remote Sensing for Environmental Analysis and Assessment</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FOR 414</td>
<td>World Forestry</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FOR 420</td>
<td>Watershed and Wetlands Hydrology</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FOR 520</td>
<td>Watershed and Wetlands Hydrology</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GIS 280</td>
<td>Introduction to GIS</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MB 411</td>
<td>Medical Microbiology</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MB 412</td>
<td>Medical Microbiology Laboratory</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MB 451</td>
<td>Microbial Diversity</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MB 452</td>
<td>Microbial Diversity Lab</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEA 101</td>
<td>Geology I: Physical</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEA 110</td>
<td>Geology I Laboratory</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEA 130</td>
<td>Introduction to Weather and Climate</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEA 135</td>
<td>Introduction to Weather and Climate Laboratory</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEA 200</td>
<td>Introduction to Oceanography</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEA 202</td>
<td>Geology II: Historical</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEA 210</td>
<td>Oceanography Lab</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEA 211</td>
<td>Geology II Laboratory</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEA 220</td>
<td>Marine Biology</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEA 250</td>
<td>Introduction to Coastal Environments</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEA 251</td>
<td>Introduction to Coastal Environments Laboratory</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEA 300</td>
<td>Environmental Geology</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEA 323</td>
<td>Geochemistry of Natural Waters</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NR 219</td>
<td>Natural Resource Markets</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NR 350</td>
<td>International Sustainable Resource Use</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NR 400</td>
<td>Natural Resource Management</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NR 420</td>
<td>Watershed and Wetlands Hydrology</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NR 421</td>
<td>Wetland Science and Management</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NR 500</td>
<td>Natural Resource Management</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NR 520</td>
<td>Watershed and Wetlands Hydrology</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NR 521</td>
<td>Wetland Science and Management</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PB 200</td>
<td>Plant Life</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PB 213</td>
<td>Plants and Civilization</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PB 220</td>
<td>Local Flora</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PB 400</td>
<td>Plant Diversity and Evolution</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PB 403</td>
<td>Systematic Botany</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PB 413</td>
<td>Plant Anatomy</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PB 421</td>
<td>Plant Physiology</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PB 480</td>
<td>Introduction to Plant Biotechnology</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PB 503</td>
<td>Systematic Botany</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PB 513</td>
<td>Plant Anatomy</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PB 580</td>
<td>Introduction to Plant Biotechnology</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PP 315</td>
<td>Principles of Plant Pathology</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SMT 200</td>
<td>Introduction to Sustainable Materials and Technology</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SMT 201</td>
<td>Sustainable Materials for Green Housing</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SMT 310</td>
<td>Introduction to Industrial Ecology</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SSC 341</td>
<td>Soil Fertility and Nutrient Management</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SSC 461</td>
<td>Soil Physical Properties and Plant Growth</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SSC 470</td>
<td>Wetland Soils</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SSC 570</td>
<td>Wetland Soils</td>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ST 350 Economics and Business Statistics 3
ST 370 Probability and Statistics for Engineers 3
TOX 201 Poisons, People and the Environment 3
TOX 401 Principles of Toxicology 4
TOX 415 Ecotoxicology 4
TOX 501 Principles of Toxicology 4

Semester Sequence

This is a sample.

Critical Path Courses – Identify using the code (CP) which courses are considered critical path courses which represent specific major requirements that are predictive of student success in a given program/plan. Place the (CP) next to the credit hours for the course.

First Year

Fall Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENV 100 & ENV 101</td>
<td>Student Success in Environmental First Year and Exploring the Environment</td>
<td>3</td>
</tr>
<tr>
<td>ENG 101</td>
<td>Academic Writing and Research</td>
<td>4</td>
</tr>
<tr>
<td>MA 131 or MA 141</td>
<td>Calculus for Life and Management Sciences A (CP) or Calculus I</td>
<td>3-4</td>
</tr>
<tr>
<td>BIO 181</td>
<td>Introductory Biology: Ecology, Evolution, and Biodiversity (CP)</td>
<td>4</td>
</tr>
<tr>
<td>GEP Health and Exercise Studies (http://catalog.ncsu.edu/undergraduate/gep-category-requirements/gep-health-exercise-studies/)</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

Spring Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PY 131</td>
<td>Conceptual Physics</td>
<td>4</td>
</tr>
<tr>
<td>ET 105</td>
<td>Introduction to Environmental Regulations</td>
<td>3</td>
</tr>
<tr>
<td>GEP Humanities (http://catalog.ncsu.edu/undergraduate/gep-category-requirements/gep-humanities/)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>IP Elective (p.)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>GEP Health and Exercise Studies (http://catalog.ncsu.edu/undergraduate/gep-category-requirements/gep-health-exercise-studies/)</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

Second Year

Fall Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 311</td>
<td>Introduction to Statistics</td>
<td>3</td>
</tr>
<tr>
<td>CH 101</td>
<td>Chemistry - A Molecular Science & 102 GENERA CHEMISTRY LABORATORY</td>
<td>4</td>
</tr>
<tr>
<td>Environmental Technology Lab Electives (p. 2)</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Ecology Elective (CP) (p. 2)</td>
<td></td>
<td>4</td>
</tr>
</tbody>
</table>

Spring Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 312 or MA 231</td>
<td>Introduction to Statistics II or Calculus for Life and Management Sciences B</td>
<td>3</td>
</tr>
<tr>
<td>NR 301</td>
<td>Practicum for Professional Development I</td>
<td>1</td>
</tr>
<tr>
<td>SSC 200 & SSC 201 SOIL SCIENCE LABORATORY (CP)</td>
<td>Soil Science</td>
<td>4</td>
</tr>
<tr>
<td>CH 201 or CH 202 QUANTITA</td>
<td>Chemistry - A Quantitative Science or NR 300 NATURAL</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET 330</td>
<td>Environmental Technology Practicum</td>
<td>15</td>
</tr>
</tbody>
</table>

Third Year

Fall Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH 220 & CH 222 ORGANIC CHEMISTRY I LAB</td>
<td>Introductory Organic Chemistry</td>
<td>4</td>
</tr>
<tr>
<td>Environmental Technology Lab Electives (p. 2)</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Spatial Technology Elective (p. 1)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Advised Elective (p. 3)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>GEP US Diversity, Equity, and Inclusion (http://catalog.ncsu.edu/undergraduate/gep-category-requirements/gep-usdei/)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>GEP Humanities (http://catalog.ncsu.edu/undergraduate/gep-category-requirements/gep-humanities/)</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Spring Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Environmental Technology Lab Elective (p. 2)</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Environmental Technology Lab Electives (p. 2)</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>ET 310</td>
<td>Environmental Monitoring and Analysis (CP)</td>
<td>3</td>
</tr>
<tr>
<td>ET/MEA 320</td>
<td>Fundamentals of Air Pollution</td>
<td>3</td>
</tr>
<tr>
<td>Advised Elective (p. 3)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>CH 223 & CH 224 ORGANIC CHEMISTRY II LAB</td>
<td>Organic Chemistry II</td>
<td>4</td>
</tr>
<tr>
<td>or TOX 415 ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fourth Year

Fall Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Environmental Technology Lab Elective (p. 2)</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>ET 455</td>
<td>Adaptive Management and Governance</td>
<td>3</td>
</tr>
<tr>
<td>NR 484</td>
<td>Environmental Impact Assessment</td>
<td>4</td>
</tr>
<tr>
<td>or NR 420</td>
<td>or Watershed and Wetlands Hydrology</td>
<td></td>
</tr>
</tbody>
</table>
Advised Elective (p. 3) 3

Spring Semester
Capstone Elective (p. 3) 3
GEP Interdisciplinary Perspectives (http://catalog.ncsu.edu/undergraduate/gep-category-requirements/gep-interdisciplinary-perspectives/) 2
Advised Elective (p. 3) 3
Free Elective 3

Hours 14

Total Hours 120

1 A grade of C- or better required.
2 Students with appropriate math skills are encouraged to take MA 141 Calculus I.
3 Students are encouraged to select courses that will fulfill an academic minor.
4 Students should consult their academic advisors to determine which courses fill this requirement.

Career Opportunities
Career opportunities include technical positions with: firms that offer environmental services; manufacturing companies that are required to maintain sophisticated environmental monitoring networks; consulting and audit firms that perform independent environmental audits; and state and federal regulatory agencies. A number of graduates have also pursued graduate degrees. Several professional certifications can be achieved through the major. Students may receive Hazardous Waste Operations and Emergency Response training and are eligible to sit for two professional certification exams: the exam for certification as an Associate Environmental Professional, and the exam Certified Hazardous Materials Manager.

Career Titles
- Environmental Compliance Inspector
- Environmental Science Professor
- Environmental Technician
- Industrial Air Pollution Analyst
- Solar Energy Systems Designer
- Transportation Engineer
- Wind Energy Engineer
- Wind Turbine Service Technicians

Learn More About Careers
NCcareers.org (https://nccareers.org/)
Explore North Carolina’s central online resource for students, parents, educators, job seekers and career counselors looking for high quality job and career information.

Occupational Outlook Handbook (https://www.bls.gov/ooh/)
Browse the Occupational Outlook Handbook published by the Bureau of Labor Statistics to view state and area employment and wage statistics. You can also identify and compare similar occupations based on your interests.

Career One Stop Videos (https://www.careeronestop.org/)
View videos that provide career details and information on wages, employment trends, skills needed, and more for any occupation. Sponsored by the U.S. Department of Labor.

Focus 2 Career Assessment (https://careers.dasa.ncsu.edu/explore-careers/career-assessments/) (NC State student email address required)
This career, major and education planning system is available to current NC State students to learn about how your values, interests, competencies, and personally fit into the NC State majors and your future career. An NC State email address is required to create an account. Make an appointment with your career counselor (https://careers.dasa.ncsu.edu/about/hours-appointments/) to discuss the results.

National Association of Environmental Professionals (http://www.naep.org/)