Materials Science and Engineering (BS): Nanomaterials Concentration

The Materials Science and Engineering (BS): Nanomaterials Concentration provides a background in materials science and engineering and emphasizes understanding materials at-length scaled sizes of individual atoms and molecules of a material in ultra-thin films, nanowires, and nanoparticles. Properties from materials at these scales can differ from those observed in bulk specimens, while material structure engineering at the nanoscale can influence bulk structural and functional properties.

Admission

Students complete the standard set of engineering first-year courses, which include courses in the humanities, chemistry, mathematics, physics, and computing. Students may apply to join the Department of Materials Science and Engineering as degree-seeking students via the CODA process (https://www.engr.ncsu.edu/academics/undergrad/coda/). Students can declare a nanomaterials concentration during the CODA process or any subsequent semester once they join the MSE department.

Curriculum

The MSE curriculum trains students to understand the wide range of phenomena that occur in all classes of materials: metals, polymers, composites, ceramics, and electronic materials.

Fundamental courses provide a foundation in thermodynamics, kinetics, and structure, followed by more applied courses that cover mechanical, thermal, electrical, magnetic, and optical properties of materials.

Two laboratory courses introduce students to analytical methods used to characterize the structure of materials at all length scales and to measure properties of all classes of materials. Cutting-edge technologies in materials science and engineering such as nanotechnology, biomaterials, computer modeling, and forensics (materials degradation and failure analysis) are covered.

As a part of the Nanomaterials concentration, students will take MSE 465: Nanomaterials. Four electives are included, which allow students to select from a broad range of courses in materials processing, engineering, chemistry, physics, and other disciplines. The flexibility afforded by these electives allows students to customize their education to prepare them for careers in industry or for graduate school.

The two-semester capstone senior design sequence provides a bridge between concepts learned in the classroom and the practical application of these concepts in an industrial setting. Teams of students work on real-world materials problems supported by local industrial sponsors.

Accelerated Bachelor's/Master's Program

The Accelerated Bachelor's/Master's (ABM) program (https:// www.mse.ncsu.edu/undergraduate/abm/) gives students the opportunity to earn a bachelor's and a master's degree in five years. Four graduate courses (12 credit hours) can be taken while still an undergraduate student and can be double-counted towards both the bachelor's and master's degrees.

Contact Information

3002 Engineering Building 1 (EB1) 911 Partners Way, Raleigh NC 27695-7907 919.515.2377 Website

To see more about what you will learn in this program, visit the Learning Outcomes website (https://apps.oirp.ncsu.edu/pgas/)!

Plan Requirements

Code Math	Title	Hours	Counts towards
MA 141	Calculus I	4	
MA 241	Calculus II	4	
MA 242	Calculus III	4	
MA 341	Applied Differential Equations I	3	
ST 370	Probability and Statistics for Engineers	3	
Sciences			
CH 101 & CH 102	Chemistry - A Molecular Science and General Chemistry Laboratory	4	
CH 201 & CH 202	Chemistry - A Quantitative Science and Quantitative Chemistry Laboratory	4	
CH 220 or CH 221	Introductory Organic Chemistry	3	
CH 222	Organic Chemistry I	1	
GH 222	Organic Chemistry I Lab	1	
PY 205 & PY 206	Physics for Engineers and Scientists I and Physics for Engineers and Scientists I Laboratory	4	
PY 208 & PY 209 Economics	Physics for Engineers and Scientists II and Physics for Engineers and Scientists II Laboratory	4	
20011011103			

1

EC 205	Fundamentals of Economics	3
or EC 201	Principles of Microeconomics	
or ARE 201	Introduction to Agricultural & Resource Economics	
Ethics Elective (p. 3)	3
Required Course	es	
MSE 201	Structure and Properties of Engineering Materials	3
MSE 255	Experimental Methods for Structural Analysis of Materials	2
MSE 260	Mathematical Methods for Materials Engineers	3
MSE 270	Materials Science and Engineering Seminar	1
MSE 300	Structure of Materials at the Nanoscale	3
MSE 301	Introduction to Thermodynamics of Materials	3
MSE 320	Introduction to Defects in Solids	3
MSE 335	Experimental Methods for Analysis of Material Properties	2
MSE 355	Electrical, Magnetic and Optical Properties of Materials	3
MSE 360	Kinetic Processes in Materials	3
MSE 370	Microstructure of Inorganic Materials	3
MSE 380	Microstructure of Organic Materials	3
MSE 420	Mechanical Properties of Materials	3
MSE 423	Introduction to Materials Engineering Design	1

MSE 470	Materials Science and Engineering Senior Design Project		3
MSE 480	Materials Forensics and Degradation		3
Nanomaterials C Course	Concentration		
MSE 465	Introduction to Nanomaterials		3
Nanomaterials El	ective (p.)		6
MSE Processing course) (p. 3)	Elective (Choose 1		3
Technical Elective course) (p. 4)	e (Choose 1		3
Orientation Cou	rse		
E 101	Introduction to Engineering & Problem Solving		1
E 115	Introduction to Computing Environments		1
Technical Writin	g		
ENG 331	Communication for Engineering and Technology		3
or ENG 333	Communication for Research	Science and	
GEP Courses			
ENG 101	Academic Writing and Research		4
GEP Humanities catalog.ncsu.edu gep-category-req humanities/)	/undergraduate/	3	-6
GEP Social Scier catalog.ncsu.edu gep-category-req social-sciences/)	/undergraduate/		3
GEP Health and Studies (http://cat undergraduate/ge requirements/gep studies/)	talog.ncsu.edu/ ep-category-		2
GEP US Diversity Inclusion (http://c undergraduate/ge requirements/gep	atalog.ncsu.edu/ ep-category-		3
(http://catalog.ncs undergraduate/ge		2	-5

GEP Global Knowledge (http:// catalog.ncsu.edu/undergraduate/ gep-category-requirements/ gep-global-knowledge/) (verify requirement) Foreign Language Proficiency (http://catalog.ncsu.edu/ undergraduate/gep-categoryrequirements/foreign-languageproficiency/) (verify requirement) 126

Total Hours

Nanomaterials Electives

Code	Title	Hours	Counts towards
CH 435	Introduction to Quantum Chemistry	3	
CH 437	Physical Chemistry for Engineers	4	
CHE 460	Chemical Processing of Electronic Materials	3	
CHE 465	Colloidal and Nanoscale Engineering	3	
CHE 468/568/ ECE 468/568	Conventional and Emerging Nanomanufacturing Techniques and Their Applications in Nanosystems	3	
E 304	Introduction to Nano Science and Technology	3	
PY 407	Introduction to Modern Physics	3	

MSE Processing Electives

Code	Title	Hours	Counts towards
MSE 440	Processing of Metallic Materials	3	
MSE 445	Ceramic Processing	3	
MSE 455	Polymer Technology and Engineering	3	
MSE 456	Composite Materials	3	
MSE 460	Microelectronic Materials	3	
MSE 540	Processing of Metallic Materials	3	
MSE 545	Ceramic Processing	3	

MSE 556	Composite Materials	3
MSE 560	Microelectronic Materials Science and Technology	3

Ethics Electives

Code	Title	Hours	Counts towards
IDS 201	Environmental Ethics	3	
PHI 214	Issues in Business Ethics	3	
PHI 221	Contemporary Moral Issues	3	
PHI 227	Data Ethics	3	
PHI 325	Bio-Medical Ethics	3	
PHI 375	Ethics	3	
STS 302	Contemporary Science, Technology and Human Values	3	
STS 304	Ethical Dimensions of Progress	3	
STS 325	Bio-Medical Ethics	3	

Engineering Electives

Code	Title	Hours	Counts towards
Any MSE proces	sing elective		
CE 214	Engineering Mechanics- Statics	3	
CE 225	Mechanics of Solids	3	
CSC 110	Computer Science Principles - The Beauty and Joy of Computing	3	
ECE 331	Principles of Electrical Engineering	3	
ISE 311	Engineering Economic Analysis	3	
MAE 206	Engineering Statics	3	
MAE 208	Engineering Dynamics	3	
MAE 214	Solid Mechanics	3	
MSE 485	Biomaterials	3	
MSE 409/509/ NE 409/509	Nuclear Materials	3	

MSE 490	Special Topics in Materials Engineering	1-4	
MSE 495	Materials Engineering Projects	1-6	
NE 202	Radiation Sources, Interaction and Detection	4	
TE 205	Analog and Digital Circuits	4	
CSC 111	Introduction to Computing: Python	3	
CSC 113	Introduction to Computing - MATLAB	3	
CSC 116	Introduction to Computing - Java	3	
departmental a	ring electives (with approval). Contact demic advisor for		
500-level cours departmental a	ses (with approval). Available		

departmental approval). Available to students who are admitted to an engineering ABM program OR have a minimum 3.5 overall GPA.

Technical Electives

Code	Title	Hours	Counts towards
Any MSE Proces	sing Elective		
Any Engineering	Elective		
BCH 451	Principles of Biochemistry	4	
CH 223	Organic Chemistry II	3	
CH 315	Quantitative Analysis	3	
CH 401	Systematic Inorganic Chemistry I	3	
MA 305	Introductory Linear Algebra and Matrices	3	
MA 351	Introduction to Discrete Mathematical Models	3	
MA 401	Applied Differential Equations II	3	
MA 402	Mathematics of Scientific Computing	3	
MA 405	Introduction to Linear Algebra	3	

MEA 463	Fluid Physics	3
PY 328	Stellar and Galactic Astrophysics	3
PY 407	Introduction to Modern Physics	3
PY 411	Mechanics I	3
PY 412	Mechanics II	3
PY 414	Electromagnetism I	3
PY 415	Electromagnetism II	3
PY 511	Mechanics I	3
PY 512	Mechanics II	3
PY 514	Electromagnetism I	3
PY 515	Electromagnetism II	3
Other technical el departmental app your MSE acader options.	roval). Contact	
500-level courses departmental app to students who a engineering ABM	roval). Available	

Semester Sequence

a minimum 3.5 overall GPA.

This is a sample.

First Year		
Fall Semester		Hours
CH 101 & CH 102	Chemistry - A Molecular Science and General Chemistry Laboratory ¹	4
E 101	Introduction to Engineering & Problem Solving ^{1, 2}	1
E 115	Introduction to Computing Environments 1,2	1
ENG 101	Academic Writing and Research ^{1, 2}	4
MA 141	Calculus I ¹	4
Select one of the follo	owing:	3
EC 205 or EC 201 or ARE 201	Fundamentals of Economics or Principles of Microeconomics or Introduction to Agricultural & Resource Economics	
	Hours	17
Spring Semester		
CH 201 & CH 202	Chemistry - A Quantitative Science and Quantitative Chemistry Laboratory	4
MA 241	Calculus II ¹	4
PY 205 & PY 206	Physics for Engineers and Scientists I and Physics for Engineers and Scientists I Laboratory ¹	4

studies/)		
GEP Requirement category-requirem	t (http://catalog.ncsu.edu/undergraduate/gep- nents/)	2
	Hours	15
Second Year		
Fall Semester		
MSE 201	Structure and Properties of Engineering Materials ¹	3
ST 370	Probability and Statistics for Engineers	3
MA 242	Calculus III	4
PY 208	Physics for Engineers and Scientists II	3
PY 209	Physics for Engineers and Scientists II Laboratory	1
GEP Health and E	Exercise Studies (http://catalog.ncsu.edu/	1
undergraduate/ge studies/)	p-category-requirements/gep-health-exercise-	
Spring Semester	Hours	15
MSE 255	Experimental Methods for Structural Analysis of Materials	2
MSE 260	Mathematical Methods for Materials Engineers	3
MSE 270	Materials Science and Engineering Seminar	1
CH 220 or CH 221	Introductory Organic Chemistry or Organic Chemistry I	3
CH 222	Organic Chemistry I Lab	1
MA 341	Applied Differential Equations I	3
GEP Requirement category-requirem	t (http://catalog.ncsu.edu/undergraduate/gep- ients/)	3
	Hours	16
Third Year		
Fall Semester		
MSE 300	Structure of Materials at the Nanoscale	3
MSE 301	Introduction to Thermodynamics of Materials	3
MSE 320	Introduction to Defects in Solids	3
MSE 335	Experimental Methods for Analysis of Material Properties	2
Technical Elective	e (p. 4)	3
GEP Requirement category-requirem	t (http://catalog.ncsu.edu/undergraduate/gep- uents/)	3
	Hours	17
Spring Semester		
MSE 355	Electrical, Magnetic and Optical Properties of Materials	3
MSE 360	Kinetic Processes in Materials	3
MSE 370	Microstructure of Inorganic Materials	3
MSE 380	Microstructure of Organic Materials	3
MOL 300		

Fall Semester		
MSE 420	Mechanical Properties of Materials	3
MSE 423	Introduction to Materials Engineering Design	1
ENG 331 or ENG 333	Communication for Engineering and Technology or Communication for Science and Research	3
MSE Processing El	lective (p. 3)	3
Nanomaterials Concentration Elective (p. 3)		3
GEP Requirement category-requirement	(http://catalog.ncsu.edu/undergraduate/gep- ents/)	3
	Hours	16
Spring Semester		
MSE 470	Materials Science and Engineering Senior Design Project	3
MSE 480	Materials Forensics and Degradation	3
Nanomaterials Concentration Elective (p. 3)		
Nanomaterials Con	ncentration Elective (p. 3)	3
	(http://catalog.ncsu.edu/undergraduate/gep-	3 3
GEP Requirement category-requirement Ethics Elective ((p.	(http://catalog.ncsu.edu/undergraduate/gep-	
GEP Requirement category-requirement Ethics Elective ((p.	(http://catalog.ncsu.edu/undergraduate/gep- ents/) . 3)GEP Requirement (http://	3

¹ Courses required for Change of Degree Audit (CODA). CH 101, CH 102; MA 141, MA 241; PY 205, PY 206 must be completed with a C or higher.

² Minimum grade of C-, E 115 requires satisfactory completion (S).

What can I do with a Nanomaterials Concentration?

Graduates of the Nanomaterials Concentration will be well prepared for a career working with materials that support nanotechnology industries including electronics, structural materials, and pharmaceuticals.

Career Opportunities

An MSE degree is interdisciplinary and, upon graduation, will qualify you for a variety of jobs with an average starting salary of \$60-70k per year.

Example Job Titles

Materials Engineer, Product Engineer, Metallurgist Engineer, Quality Control Engineer, Failure Analysis Engineer, Renewable Energy Materials Engineer, Biomaterial Engineer, Polymer Materials Engineer, Project Manager

Example Job Description

- Identify and produce a diverse range of materials for applications of interest
- · Develop and improve methods for the analysis of complex materials
- Assist in the selection of materials for product application, the calculation of design parameters, the performance of material properties testing

• Apply scientific methods to resolve technical challenges related to materials and their use in products and processes